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A B S T R A C T   

A widely promoted approach to tackle food insecurity and water shortage challenges simultaneously is to 
enhance crop water productivity (WP). Therefore, multiple international organizations have featured WP im-
provements as their major policy goal, and substantial public and private investments have been made in this 
domain. Advances in remote sensing allow accurate, rapid, and cost-effective WP analysis for agricultural 
monitoring. However, translating the data to actionable information seems fraught with difficulties, as it only 
provides spatial and temporal variability in WP and no information on the causes of the variability. This paper 
introduces a standard approach using open-source remote sensing data for diagnosing reasons behind WP var-
iations, comparing high performing fields (bright spots) with low performing fields (hotspots). The framework is 
applied to a case study on the Bekaa Valley in Lebanon considering wheat, potato and table grapes. Six factors 
(crop water stress, irrigation uniformity, soil salinity, nitrogen application, crop rotation and soil type) were 
analysed to identify their influence on WP and yield. This paper reveals that the growth of wheat and potatoes is 
negatively affected by water stress in the critical crop growth stages, non-uniform irrigation and nitrogen stress. 
Also, it was found that potatoes grown on clay-loam soil has better WP and yield than potatoes grown loam soil. 
Such information with regard to WP factors assists practitioners to identify priority areas and actions aiming at 
cropfield level WP improvement. While acknowledging errors, uncertainties and caveats inherent to the use of 
remote sensing data, this paper shows the feasibility and practical usefulness of the diagnostic framework.   

1. Introduction 

A significant challenge for the current and future generations is to 
ensure food security with the sustainable use of limited land and water 
resources. Globally, 820 million people face hunger (FAO, 2019). At the 
same time, about four billion people face water scarcity during at least 
one month of the year (UNESCO World Water Assessment Programme 
WWAP, 2019). In the future, the situation is expected to get worse due to 
climate change. Farmers will be exposed to increased agricultural water 
supply variability, growing unpredictability, and frequent droughts and 
floods (FAO, 2011). Due to the increased competition with industrial 
and domestic sectors, water availability for agriculture production will 
decrease (Zwart and Bastiaanssen, 2007; Bakkes et al., 2009). Therefore, 
a widely promoted approach to cope with the water and food insecurity 
challenges is to increase agricultural water productivity. Thus, multiple 
international organisations including World Water Council (WWC); the 
International Water Management Institute (IWMI); WWAP; and FAO 

have featured water productivity improvement as a major policy goal 
(Scheierling and Tréguer, 2018). 

The term water productivity (WP) was introduced to emphasise that 
increasing local irrigation efficiency might not lead to basin-wide water 
savings (Seckler, 1996). Since then, many other authors have defined 
WP differently, revolving around crop per drop (Scheierling and 
Tréguer, 2018). Kijne et al. (2003) defined WP as the ratio of the value or 
amount of product to the value or volume of water depleted or diverted. 
Molden et al. (2010) have defined it as the net benefit from the plant, 
fishery, livestock and mixed agricultural system per unit water used. For 
this research study, we define WP as the amount of marketable biomass 
(economic product of a specific crop) in kilograms produced per unit 
volume of actual evapotranspiration and interception (ET). 

Capturing and analyzing spatial and temporal variability in WP 
paves the way for identifying the potential for improving WP (Zwart and 
Bastiaanssen, 2007). Remote sensing is an excellent tool that allows 
comprehensive analysis and requires comparatively little ground 
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information (Cai and Sharma, 2010). It enables WP estimation with 
acceptable accuracy, with errors ranging from 7% to 22%—for the 
best-case scenario (Blatchford et al., 2019). Finally, remote sensing is 
low cost compared to the ground measurements and offers a rapid scan 
of the WP in a rather large extent of area (Zwart and Leclert, 2010). In 
combination with other spatial information, it can diagnose the causes 
of low performance and identify interventions for improving WP. 

Since the first applications of remote sensing for agricultural moni-
toring using the energy balance to estimate evapotranspiration (Bas-
tiaanssen et al., 1998), open-source remote sensing products have 
become more available. Not only are there various remote sensing 
products for evapotranspiration, in combination with vegetation related 
products such as Leaf Area Index (LAI), Normalized Difference Vegeta-
tion Index (NDVI) and Net Primary Production (NPP), it can also provide 
spatial and temporal WP estimates. However, observing the variability 
of WP on its own does not contribute to improving WP. The data has to 
be translated to actionable information, by identifying the causes for the 
variability. This study, therefore, evaluates how open-source spatial 
data products can be used to identify reasons behind low performances. 
This study developed a standard procedure (framework) that can be 
used to utilize open-source remote sensing data for identifying reasons 
behind WP variations. 

2. Material and methods 

2.1. Study area 

The Bekaa Valley was chosen as the case study for developing and 
testing the diagnostic framework due to the availability and accessibility 
of both field data and high-resolution RS imagery. The Bekaa Valley, 
located in eastern Lebanon, has a total area of 90,000 ha and is situated 
between Anti-Lebanon and Mount Lebanon to the east and west, 
respectively (Fig. 1). The Valley has a Mediterranean climate with 
average annual rainfall ranging from 700 mm year-1 in the southern part 
to 250 mm year-1 in the northern part (Chalak and Sabra, 2007). The 
major crops grown in the Valley are wheat, early potatoes and vegeta-
bles (Caiserman et al., 2019). Next to seasonal crops, many perennial 
fruit trees are grown in the Bekaa Valley, including apples, grapes, cit-
rus, cherries, almonds, apricots, peaches, plums and pears (Verner et al., 
2018). 

During summer—the main cropping season—the reference evapo-
transpiration exceeds the precipitation. Irrigation supply is therefore 

essential to meet the evaporative demand of the crops (Fig. 2). A large 
portion of the irrigation water (72%) is supplied from groundwater (FAO 
and IHE Delft, 2019). Based on the field survey, most of the farmers in 
the Valley use sprinkler irrigation (65%), followed by drip irrigation 
(22%), micro-sprinklers (6%) and furrow irrigation (4%) (Jaafar et al., 
2017). Potatoes and table grapes are grown under full irrigation, while 
supplementary irrigation is practiced for wheat (Stokvis, 2017). This 
research is carried out on three major crops, potatoes, wheat and table 
grapes. 

The Bekaa Valley is known as the country’s food basket, and 42% of 
the total agricultural land is concentrated in the Valley (Verner et al., 
2018). However, insufficient rainfall and its seasonality, make water a 
primary constraint for agricultural production (Saab et al., 2014). 
Therefore, improving water productivity is of vital importance in the 
Valley, to sustain food production in light of growing water scarcity. 

2.2. Remote sensing data 

2.2.1. WaPOR data 
FAO’s portal to monitor water productivity through open access of 

remotely sensed derived data (WaPOR) contains datasets for estimating 
WP. It comes in three levels with different resolutions (FAO, 2018). For 
the Bekaa Valley, the highest resolution (30 m) is available and was used 
for this study. The most recent WaPOR version (2.1) was accessed 
through https://wapor.apps.fao.org/home/WAPOR_2/3. Table 1 shows 
the different WaPOR datasets used in this study. 

2.2.2. Other remote sensing data 
Data from the Landsat 8 and Sentinel 2 satellite missions have been 

acquired. This data is used to calculate leaf moisture, soil salinity and 
leaf nitrogen, described separately in the later sections. On-demand 
surface reflectance Landsat 8 data is downloaded from the official 
United States Geological Survey (USGS) website. Then, clouds and 
shadows were removed using the "Cloud masking for Landsat products" 
plugin in QGIS. Sentinel 2 data was downloaded from THEIA, which had 
already been atmospherically and slope corrected. The clouds and 
shadows were removed by using the masks already provided with the 
data. Soil-type data is acquired from SoilGrids—a global soil-properties 
mapping system that is based on state-of-the-art machine learning 
methods (Hengl et al., 2017). 

Fig. 1. Geographic location of the case study area (Bekaa Valley).  

Fig. 2. Monthly average precipitation (P) and reference evapotranspiration 
(RET) in the Bekaa Valley. 
Data source: WaPOR 2009–2017. 
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2.2.3. Unit of analysis 
This study applies the analyses at the crop-field level. The crop-field 

boundaries (polygons) are delineated based on a 30 m resolution crop 
mask obtained from WaPOR. As can be seen from Tables 1 and 2, the 
spatial resolution of the various datasets used varies, with WaPOR and 
Landsat 8 data being available at 30 m resolution, Sentinel 2 10–20 m, 
while SoilGrids data is having a coarser resolution of 250 m. While the 
statistics calculated for crop fields based on Sentinel 2 data is not ex-
pected to affect the accuracy of the analysis, the coarser resolution data 
from SoilGrids could affect the accuracy of the results. Therefore, crop 
fields laying on multiple soil types were removed from analysis. 

2.2.4. Period of analysis 
The analyses were implemented for the year 2017 when there was an 

overlap between the crop-type map of WaPOR, available at the time of 
the study and the Sentinel-2B data. A comparison was done on the water 
productivity values from 2015 to 2019 to ensure the selected year was 
not abnormal. 

2.3. Analytical framework 

The analytical framework (Fig. 3) applied in this study consist of four 
steps. 1) Yield and WP figures for each crop field were calculated using 
WaPOR data. 2) Bright spots (well-performing crop fields) and hot spots 
(poor-performing crop fields) were identified in the study area. 3) Based 
on available WaPOR and other remote sensing data, various indicators 
were defined to identify factors affecting yield and water productivity. 
4) Finally, analyses of WP factors were done between different in-
dicators and the hotspots and the bright spots to diagnose reasons 
behind yield and WP variations. The framework is applied to three main 
crops in the Bekaa Valley (wheat, potatoes and grapes). Each step is 
described in detail in the next sections. 

2.3.1. Yield and water productivity estimation 
The yield and water consumption are calculated for the selected 

crops using a field-boundary map. This was obtained, for each crop type, 
by polygonising a raster crop-type map of the study area. For wheat and 
potatoes, the crop-type map corresponding to the full canopy cover for 
each crop (for the wheat first decade of March and potatoes last decade 
of April) from WaPOR were used. For the table grapes, the crop-type 
mask was provided by Alvarez-Carrion (2018), as WaPOR crop type 
map does not differentiate between the table-grapes and wine-grapes. 

Yield and WP are calculated by using WaPOR data (NPP and ET). The 

above-ground biomass production is calculated using Eqs. 1 and 2 (FAO, 
2018) and finally crop yield is calculated by Eq. 3 (Mul and Bas-
tiaanssen, 2019). 

DMPi = NPP × 22.222 × Ndi (1)  

AGBPs =
∑EOS

i=SOS
DMPi × AOT (2)  

Y =
AGBP × HI × C4

(1 − mc)
(3) 

The DMPi is dry matter production (kgDMP ha-1 dekad-1), NPP is net 
primary production (gC m-2 day-1), Ndi is the number of days in a dekade 
(days) and AGBPs is seasonal above-ground biomass production (kg ha-1 

season-1) from the start of the season (SOS) to the end of the season 
(EOS), HI is dry basis harvest index (fraction) and AOT is AGBP over 
Total Biomass Production (TBP). The fraction, AOT, is used in the 
calculation of AGBP if the HI of a crop is calculated as yield to above- 
ground biomass. For wheat, the HI is calculated as yield to above- 
ground biomass ratio (Abi Saab et al., 2019; Karam et al., 2009). Con-
trary to this, HI of potatoes is the ratio of the dry weight of the tubers to 
the dry weight of the entire plant (Darwish et al., 2006; Mazurczyk et al., 
2009) and HI of grapes is calculated as the marketable yield divided by 
the total biomass production (TBP) (Alvarez-Carrion, 2018). Therefore, 
unlike the wheat crop, the AOT value for potatoes and grapes is “1.00” 
and can be ignored in AGBP’s equation. Thus, users must be clear on 
how the HI is defined in the literature consulted. Y is yield (kg ha-1 

season-1). The light use efficiency of C4 crops is about 80% higher than 
the C3 crops, therefore, the Y of C4 crops is multiplied by a factor of 1.8 
(Mul and Bastiaanssen, 2019). For C3 crops the factor value is “1.00” 
and can be ignored in Eq. 3. The mc is wet weight basis plant moisture 
content (fraction). The SOS and EOS for each crop were identified from 
the NDVI time series. Whereas the crop-specific parameters were 
adapted from literature as summarized in Table 3. 

WaPOR data quality index (QI) is produced while compositing the 
NDVI and indicates the gap between the nearest observation date and 
reconstruction date (FAO, 2018). For the available and reliable obser-
vations, the reconstruction is not needed and thus the QI is set to zero 
(an ideal condition). The NDVI composites are used as inputs to NPP and 
ET calculation therefore, the QI depicts the quality of NPP and ET (FAO, 
2018). To ensure better accuracy of the data used, the NPP and ET pixels 
with QI greater than 3 dekades were removed from each image. It means 
that the data constructed based on a gap longer than 30 days in-between 
valid observations is discarded. This criterion for QI can adjusted based 
on the user preferences and local circumstances. As this study uses the 
crop-field level as the unit of analysis, the average value of all pixels 
within a crop field is considered for analysis, therefore, removing 
low-quality pixels did not create data gaps at the field level. 

Water Productivity is calculated using the following formula (Chu-
kalla et al., 2021): 

WP = Y/ET ×
1
10

(4) 

The WP is water productivity (kg m-3), Y is yield (kg ha-1 season-1), 
and ET is seasonal actual evapotranspiration for a specific crop type 
(mm season-1). 

After the yield and WP maps have been prepared, then the crop fields 
with implausible data were removed by using the following four criteria 

Table 1 
Data components acquired from the WaPOR database.  

Data component Level Temporal 
resolution 

Spatial 
resolution 

Actual Evapotranspiration 
Interception (ET) 

Sub- 
national 

10 days 30 m 

Net Primary Production (NPP) Sub- 
national 

10 days 30 m 

Land Cover Classification (LCC) Sub- 
national 

10 days 30 m 

Quality of Land Cover 
Classification (QI-LCC) 

Sub- 
national 

Seasonal 30 m 

Quality of Normalized Difference 
Vegetation Index (QI) 

Sub- 
national 

10 days 30 m 

Source: WaPOR database 

Table 2 
Other remote sensing data acquired for the study.  

Data component Data source Temporal resolution Spatial resolution Website 

Surface Reflectance (Band 5, 6, 8) Landsat 8 16 days 30 m https://www.usgs.gov/land-resources/nli/landsat 
Surface Reflectance (Band 5, 7, 8 A, 11) Sentinel 2 5 days 10–20 m https://theia.cnes.fr/atdistrib/rocket/#/home 
Soil types/classes SoilGrids Not Applicable 250 m https://soilgrids.org/  
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filter to avoid erroneous conclusions.  

– Crop fields with a coefficient of variation of WP (WPcv) greater than 
20%. With WPcv calculated using the following equation: 

WPcv =
σwp

WPmean
(5)  

σwp is the standard deviation of WP within the crop field and WPmean is 
the mean water productivity of a crop field.  

– Crop fields with an area of less than one hectare.  
– Crop fields with the yield value higher than the maximum achievable 

and lower than the minimum recorded, based on literature.  
– Crop fields with an average LCC accuracy of less than 80%. 

Fig. 4 shows all the selected crop fields, after removal of the fields 
with implausible data, for the analysis. 

2.3.2. Identification of bright and hot spots 
Bright spots generally can be defined as the agricultural communities 

and households which are performing better than their neighbours even 
with the same social, environmental and demographic pressures (de 
Vries, 2005). On the other hand, low performing areas are considered 
hot spots (Karimi et al., 2019). These bright and hot spots can be used to 
identify the causes behind what is affecting the performance. 

Bright spots can be defined in terms of higher yield (e.g. Cai and 
Sharma, 2010 in India), higher WP or a combination (e.g. Alauddin 
et al., 2010 in Bangladesh). By focusing on WP improvements alone, 
ignores the farmers’ need to produce crops for food security and income, 
whilst only focusing on yield improvement may affect the sustainability 
of the basin water resources. Therefore, in this study, we focused on 
identifying bright and hot spots based on both yield and WP. 

There is still a debate as to what level defines better performance. For 
yield, Licker et al. (2010) defined the attainable yield within regions of 
similar climate at the 90th percentile, whereas Foley et al. (2011) used 
the 95th percentile. For WP, Alauddin et al. (2010) used the top quartile 

(75th percentile), whereas Zwart and Bastiaanssen (2004) and Zwart 
et al. (2010) used the 95th percentile to exclude extremes. 

The selection of the threshold is arbitrary but has a significant effect 
on the results. For example, using high threshold values (> 95th) pri-
marily identifies extremes (Zwart et al., 2010) while the focus should be 
more on values which are attainable under the set conditions (i.e. a 
lower threshold value). For this study, we tested threshold values (70th 
to 95th percentile with 5 percentile intervals), and selected the 
threshold value which provided a sufficiently large number of fields in 
the bright and hotspots categories (exceeding the threshold levels in 

Fig. 3. Analytical framework used to identify factors affecting yield and WP in the Bekaa Valley.  

Table 3 
Crop specific parameters for yield estimation.  

Crop 
type 

Harvest Index Moisture Content AOT C4  

Based on AGBP Based on TBP    

Wheat 0.39 Average of Abi Saab et al. (2019) and Karam 
et al. (2009)  

15% Karam et al. 
(2009) 

0.72 Figueroa-Bustos et al. 
(2018) 

1.00 (Wang et al., 2012) 

Potatoes  0.79 Darwish et al. 
(2006) 

79% Darwish et al. 
(2006) 

1.00 1.00 Wang et al. (2012) 

Grapes  0.31Alvarez-Carrion 
(2018) 

75% Jarmain et al. 
(2007) 

1.00 1.00 Morata and Loira 
(2016)  

Fig. 4. Location of the selected crop fields for the analysis.  
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both yield and WP) and significantly large performance gap. We, 
therefore, used the 80th percentile threshold for both yield and WP to be 
classified as bright spots, while fields below the 20th percentile are 
categorised as hot spots. 

2.3.3. Defining indicators for WP factors 
Reasons behind yield and WP variations can be diagnosed by 

analyzing the internal (genetic) and external (environmental) factors 
that affect crop production. Six WP factors (external), water stress, 
irrigation heterogeneity, salinity stress, nitrogen stress and soil type 
were considered in this study as they can be determined using WaPOR 
and other remote sensing data. Each factor is analyzed by using one or 
more indicator(s) to find reasons behind WP variations (see Fig. 5). Each 
indicator is separately discussed in the following sections. 

2.3.4. Water stress 
Water stress is assumed to be linked to leaf water content and plant 

moisture stress. This can be observed using the mid-infrared (MIR) 
(Carlson et al., 1971; Thomas et al., 1971; Tucker, 1980; Everitt, 1986; 
Ripple, 1986) and near-infrared (NIR) wavelengths (Hardisky et al., 
1983; Everitt, 1986; Ceccato et al., 2001) RS bands. Therefore, various 
vegetation indices, based on NIR, are proposed for detecting plant 
moisture stress, we selected the Normalized Difference Moisture Index 
(NDMI) in this study as it was found to have the highest correlation with 
leaf and canopy water content (R2 = 0.68) (Zhang et al., 2018). 

NDMI =
Rn − Rs

Rn + Rs
(6)  

Rn and Rs are reflectances for NIR and shortwave infrared (SWIR), 
respectively. The index is calculated by using Sentinel 2 band 8 A (NIR) 
and band 11 (SWIR). To increase the temporal resolution of data, NDMI 
was also calculated by using similar bands on Landsat 8: band 5 (NIR) 
and band 6 (SWIR). Images acquired on the same date resulted in highly 
similar NDMI maps, represented by R2 = 0.98 and Mean Bias 
Error = 0.003. 

The crop response to water stress was identified from the change in 
leaf moisture content and corresponding changes in biomass production. 
Crop fields identified as bright spots were assumed to have optimal 
moisture content conditions. Therefore, the average NDMI value of 
bright spots was considered a benchmark against which the hot spots’ 
NDMI value was compared. In this way, the moisture stress in hotspots 
was quantified by subtracting the average NDMI of hot spots from the 
average NDMI of bright spots from SOS to the EOS. The larger difference 
in NDMI (NDMIdiff) indicates higher stress in hotspots and vice versa. 
Similarly, the difference in biomass production (NPPdiff) was quantified 
by subtracting the average NPP of hot spots (NPPHS) from the average 
NPP of bright spots (NPPBS). The core methodology is to compare 
NDMIdiff with NPPdiff to know how crops respond to water stress in terms 
of changes in biomass production. 

To better understand crop response to water stress, the Stress 

Sensitivity Index (SSI) was developed in this study. The SSI was calcu-
lated by dividing the NPPdiff of a decade over the corresponding 
NDMIdiff. The SSI was calculated for all decades, from SOS to the EOS. 
The SSI time series indicates how biomass production is affected by 
changes in the moisture stress along the crop growth cycle. The crop 
response to stress is investigated through all phenological stages of each 
crop type to identify its stress-sensitive growth stages. For this purpose, 
four general physiological stages introduced by FAO—initial-, devel-
oping-, mid-, and late-stage—and more crop-specific growth stages were 
adapted from literature. 

SSI =
NPPBS − NPPHS

NDMIBS − NDMIHS
(7)  

Where: 
SSIis stress sensitivity index (-). 
NDMIBSis average normalised difference moisture index of bright 

spots (-). 
NDMIHSis average normalised difference moisture index of hot spots 

(-). 

2.3.5. Irrigation heterogeneity 
The variability in evapotranspiration (ET) within a crop field is 

assumed to be related to the heterogeneity in the water application. The 
within-field coefficient of variation of ET (CVET) (Karimi et al., 2019) is 
calculated and correlated with the yield and WP to assess non-uniform 
irrigation practices’ effect on crop production and water consumption. 

2.3.6. Salinity stress 
In cases where the salinity stress is coupled with other stres-

ses—moisture, aeration, or diseases—bare soil salinity can help identify 
the impact of soil salt content on crop production. Al-Khaier (2003) 
proposed the Normalized Difference Salinity Index (NDSI) that allows 
accurate salinity detection (R2 = 0.86) of the bare agricultural soil. 

NDSI = (Rs1 − Rs2)/(Rs1 +Rs2) (8)  

Rs1 and Rs2 are reflectances for SWIR1 (band 4) and SWIR2 (band 5) on 
Advanced Spaceborne Thermal Emission and Reflection Radiometer 
(ASTER). As ASTER data is not available currently, similar bands of 
Landsat 8—SWIR1 (band 6) and SWIR2 (band 7)—are used for NDSI 
calculation. Abuelgasim and Ammad (2019) have also used Landsat 8 
data for bare soil salinity detection. They have assessed the accuracy of 
multiple salinity indices, of which the NIR-SWIR index (NSI) has the 
highest accuracy (60%). 

NSI =
Rs1 − Rs2

Rs1 − NIR
(9)  

Rs1, Rs2 and NIR are reflectances for SWIR1 (band 6), SWIR2 (band 7) 
and NIR (band 5) on Landsat 8, respectively. To identify the effect of 
salinity, the NDSI and NSI of each crop field are correlated with their 
yield and WP figures. 

2.3.7. Nitrogen stress 
A study by Ramoelo and Cho (2018) has exposed that the simple 

ratio of red edge index (SRRE3), based on Sentinel 2 data, allows an 
accurate estimate of the leaf nitrogen content, represented by R2 of 0.75 
and RMSE of 0.17 (%N). In this study, the SRRE3 is used for leaf nitrogen 
estimation. 

SRRE3 =
Rre3

Rre1
(10)  

Rre1 and Rre3 are respectively reflectances for Visible Red Edge (VRE1) 
(band 5) and VRE3 (band 7) on Sentinel 2. The SRRE3 values of all 
identified bright spots were averaged for each decade from SOS to the 
EOS to produce their average leaf nitrogen content time series. A similar 

Fig. 5. Indicators used to identify factors affecting WP.  
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time series for hot spots were also produced. Then their average leaf 
nitrogen content time series were compared with each other to know the 
role of nitrogen application in biomass production. 

2.3.8. Effect of crop rotation on yield and WP 
Crop rotation is the growing of a series of various crop types on the 

same crop field in successive years or seasons (Cottren and Gryder, 
2014). For each crop, its preceding crop grown on the same field was 
identified by using WaPOR LCC of the previous season. The crop fields 
were categorized as rotated and mono-cropped. For instance, if the 
preceding crop of a wheat field in 2017 was identified as wheat in 2016, 
then the field was categorized as mono-cropped. Further, if multiple 
crops are grown on the same crop field in 2016, then the area of partial 
rotation is considered. If more than 50% of the crop-field area is covered 
by crops other than wheat in 2016, then the crop-field is categorised as 
rotated, otherwise, the crop field is mono-cropped. The yield and WP 
figures of the two groups—rotated and mono-cropped fields—were 
tested with the t-test to determine the significance of the rotation 
practices. More detailed information about the t-test is provided in the 
section "Data analysis ↱2.3.4". 

2.3.9. Effect of soil type on yield and WP 
The raster layer of soil-type (soil classes based on United States 

Department of Agriculture (USDA) classification) map was acquired 
from SoilGrids (Table 2). The soil information is then extracted to the 
polygon of each crop field by using the zonal statistic in QGIS. The yield 
and WP figures of the crop fields associated with the different soil types 
were tested with the t-test to identify the statistical significance of soil 
type influence on yield and WP. 

2.3.10. Data analysis 
Various approaches were adapted for analysis based on the data type. 

In this study, three kinds of data analysis were performed. Each is 
described separately in the below sections. 

2.3.11. Bright and hot spots time series comparison 
The NDMI, NPP, SSI and SRRE3 of each crop is changing from time to 

time during the growth period. Therefore, time series from SOS to the 
EOS for these indicators were produced to track their fluctuations along 
the crop growth cycle. To increase the significance of the results, 
average time series were produced for the bright and hot spots cate-
gories. For example, the NDMI time series of all wheat bright spots were 
averaged into one average wheat bright spot NDMI time series. Simi-
larly, one average wheat hot spot NDMI time series were produced. 
Variations in these average time series were analysed to understand 
various factors affecting crop yield. 

2.3.12. T-test analysis 
The crop fields can be clustered into a specific number of groups 

based on their soil type. For instance, they were grouped as loam and 
clay loam soils. Then the yield and WP figures of both groups were tested 
with the t-test to determine whether the difference between the means of 
the groups is significant or not. If the t-score exceeds its critical value (at 
p < 0.05), then the difference is significant and vice versa. A significant 
difference implies that the factor (soil type) has affected yield or WP. 

2.3.13. Correlation analysis 
For the CVET, NDSI and NSI, all crop fields have a single value for a 

season. Therefore, their time series cannot be produced. Besides, for 
these indicators, all crop fields have a unique value. Therefore, they 
cannot be categorised into groups. Thus, CVET, NDSI and NSI of the 
individual crop fields were correlated with their corresponding yield 
and WP figures. Correlation evaluates the relationship between two 
variables quantitatively. A higher correlation indicates a stronger rela-
tionship between variables, whereas a weak correlation implies that the 
variables are not related to each other. 

3. Results and discussion 

3.1. Yield and water productivity estimation 

Crop yield and WP maps of each crop type for all crop fields were 
estimated. The summary is presented in Table 4 and Fig. 6. 

The average estimated wheat yield (3203 kg ha-1) and potatoes yield 
(31,495 kg ha-1) are quite comparable with the reported wheat yield 
(3000 kg ha-1) (Tohmé Tawk et al., 2019) and potatoes yield (32, 
533 kg ha-1) (Awad, 2019) in the Valley. The average grapes yield in 
Lebanon, based on FAOSTAT (2020) data from 2008 to 2018, is 
8741 kg ha-1, whereas the calculated grapes yield in this study is 17, 
858 kg ha-1. The discrepancy is because the FAOSTAT (2020) reports the 
average yield of both wine and table grapes and this study considers only 
table grapes. Also, the reported yield is the average value at the country 
level, while the estimated yield value is only for the Bekaa Valley. 
Furthermore, the estimated average WP of wheat (0.82 kg m-3), po-
tatoes (8.05 kg m-3) and grapes (2.40 kg m-3) are within their respective 
global WP ranges 0.62–2.00 kg m-3 (Foley et al., 2019), 
4.00–11.00 kg m-3 (Steduto et al., 2012) and 1.3–4.5 kg m-3 (Alvar-
ez-Carrion, 2018). 

Although, the yield and WP estimations using the WaPOR data—-
with the single HI value—show a good correlation with figures from the 
field. But, the HI should be adjusted, upward or downward, depending 
on the timing, crop phenological stage and extent of various stresses and 
sensitivity of the crop to these stresses (Steduto et al., 2012). Whereas in 
this study, based on literature, one constant HI value is used, thus, 
considering the HI dynamics, yield estimated by using a single HI value 
might not depict the real crop yield variations. 

The analyses further presented in the paper reflect the diagnostic 
analysis for the year 2017, which is an average year of Table 4. 

3.2. Identified bright and hot spots 

Table 5 summarises the total number of crop fields and the number of 
crop fields categorised as bright and hot spots for each crop type. 

The spatial distribution of bright and hot spots of wheat, potatoes 
and grapes is shown in Fig. 7. An example of a scatter plot of yield versus 
WP for potatoes with the identified bright and hot spots are shown in  
Fig. 8. 

A single threshold value is used for the entire Valley to identify bright 
and hot spots. But the Valley has various climatic zones, therefore, the 
threshold value might be too high or low for certain areas. Thus, it is 
recommended to determine and delineate various agro-climatic zones 
and apply separate thresholds to each zone. 

3.3. Analysis of WP factors 

3.3.1. Water stress 
Fig. 9-A shows that before 12th March the wheat NPPdiff is marginal, 

even though the NDMIdiff around February is very high. From the 
booting stage onward, despite a decrease in NDMIdiff, the NPPdiff soars. 
The SSI curve further demonstrates the influence of moisture stress on 

Table 4 
Calculated water productivity figures based on five years of data from WaPOR 
(2015–19).  

Crop type Mean WP (kg m- 

3) 
Mean yield (kg ha- 

1) 
Mean ET (mm season- 

1) 

Wheat 0.82 (0.02/0.03) 3203 (331/0.10) 393 (43/0.10) 
Potatoes 8.05 (0.52/0.06) 31,495 (1729/ 

0.05) 
367 (67/0.18) 

Table Grapes 2.40 (0.25/0.10) 17,858 (1427/ 
0.07) 

752 (62/0.08) 

Water productivity (WP), evapotranspiration (ET). In parenthesis (standard 
deviation/coefficient of variation). 
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biomass production (Fig. 9-B). The SSI remains close to zero from the 
initial to the mid of the developing stage (start of booting). While with 
the onset of the booting stage, the SSI mounts and remains higher till the 
end of the grain filling stage. This indicates that the wheat biomass is 
more sensitive to moisture stress from the mid-developing to grain filling 
stage. Zhang and Oweis (1999) have also found that wheat sensitivity to 
water stress in the Mediterranean region is higher from the booting stage 
to grain filling and then reduces at the late-stage (Table 6). 

Biomass loss in the potatoes has occurred from the tuber initiation 
until maturity (Fig. 9-C). At tuber initiation and the start of tuber filling, 
the moisture deficit has a real-time effect on biomass production; the 

NPPdiff soars as the NDMIdiff rises. However, in the mid tuber filling, the 
decreases in NDMIdiff do not affect the gained momentum of the NPPdiff 
curve. It is because water deficit during tuber initiation limits the 
number of tubers formation (Obidiegwu et al., 2015), which reduces 
biomass accumulation during tuber filling. The SSI for the potato crop 
(Fig. 9-D) demonstrates that yield response to stress is peaking in the 
tuber filling stage and then sharply declines at maturity (late-stage). 
Steduto et al. (2012) also reported that the yield response factor (ky) for 
potatoes sharply declines from 0.7 in the mid-stage to 0.2 in the 
late-stage (Table 6). The SSI of potatoes remains low from the estab-
lishment to mid tuber initiation while Table 6 shows a very high po-
tatoes sensitivity to stress at the initial stage. At this period, the potatoes 
are not stressed (NDMI diff remains almost zero, see Fig. 9-C), therefore 
crop response in terms of yield reduction is not captured. Thus, to better 
understand crop response to stress at each stage, crops should be 
intentionally stressed at every phenological stage. 

Many grape varieties—some are listed by Leeters (2018) and 
Alvarez-Carrion (2018)—in the Valley causes significant heterogeneity 
in phenological stages and in harvest time within and between the 
groups—bright and hot spots. Therefore, a comparison of NDMI and 
NPP figures does not give sufficient information about the grapes stress 
response to biomass production. This also signifies that the SSI analysis 
for intercropping leads to erroneous results due to differences in biomass 
production, HI and ET of various crops in the same crop-field. 

Fig. 6. Box plot showing WP (A), Y (B) and ET (C) for wheat, potatoes and table grapes.  

Table 5 
Summary of the number of crop fields.  

Crop type Number of total crop 
fields 

Number of bright 
spots 

Number of hot 
spots 

Wheat  544  32  34 
Potatoes  341  52  58 
Table Grapes  383  57  64  

Fig. 7. Spatial distribution of bright and hot spots of all crops under the study.  

Fig. 8. Potatoes bright and hot spots shown in Yield-WP scatter plot.  
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The results show that the changes in NDMI and NPP of potatoes are 
more prominent than in wheat. This implies that the potato leaf welt 
sooner than the wheat in response to the water stress. Such information 
can be very useful for choosing stress-tolerant cultivars such as wheat in 
areas where water stress occurs. 

The results also reveal that farmers associated with the hot spots 
have lost substantial wheat yield during the flowering and grain filling 
stages and potato yield during the tuber filling stage. These growth 
stages were also identified as the most stress sensitivity periods for their 
corresponding crops therefore water stress during the most sensitive 
growth periods is suggested to be prevented. This indicates, a need for 
better irrigation scheduling, improved moisture conservation or wiser 
water allocation along the crop growth period. 

Fig. 9. NDMI and NPP difference graph for the wheat crop (A). Stress sensitivity index for various wheat growth stages (B). NDMI and NPP difference graph for the 
potato crop (C). Stress sensitivity index for various potato growth stages (D). 

Table 6 
Crop yield response to water stress.  

Crop 
type 

Initial- 
stage 

Developing- 
stage/boosting 

mid-stage/ 
grain 
filling 

late- 
stage 

Source 

Wheat  0.01  0.31  0.28  0.10 Zhang and 
Oweis 
(1999) 

Potatoes  0.60  0.33  0.70  0.20 Steduto et al. 
(2012)  
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3.3.2. Irrigation heterogeneity 
Fig. 10-A-C show that irrigation heterogeneity (CVET) negatively 

correlates with the yield of all three crops, whereas CVET does not 
significantly correlate with the WP. This exposes that only the yield of 
the crops is negatively affected by irrigation heterogeneity. This con-
firms findings by Abd El-Wahed et al. (2016). Currently, 65% of the 
farmers use sprinkler irrigation systems with only 65% efficiency due to 
the windy nature of the Valley (Jaafar et al., 2017). The reduction in 
CVET and subsequent increase in the potato yield can be realized by 
changing the sprinkler irrigation system to the drip irrigation system. 
The farmers who have switched to drip irrigation systems have already 
increased their potato yield in the Valley (United States Agency for In-
ternational Development USAID (2014)). 

The CVET indicates variations in ET which is assumed to be due to 
irrigation application. This could be caused due to variable application 
of non-water inputs and variability in soil properties (Gil et al., 2019). 
Also, partial infection of a crop-field with diseases could lead to vari-
ability in ET. Furthermore, a farmer may grow various varieties of the 
same crop in a field. The chances of these contributing factors to vari-
ability are higher in the larger crop fields than the smaller. Therefore, 
the users must be aware of the other potential contributors to CVET to 
better inform decisions. 

3.3.3. Salinity stress 
The results in Fig. 10-D show that salinity has neither affected wheat 

yield nor WP, as represented by a non-significant and weak correlation. 
Likewise, potato WP and yield is not affected by salinity, demonstrated 
by weak correlations (Fig. 10-E). FAO and International Atomic Energy 
Agency (IAEA) (2018) also state that the soil salinity of rain-fed, flood 
irrigation and alternative drip and sprinkler irrigation practices is very 
low (0.7–1.7 dS/m) in the Valley. However, monoculture and localized 
irrigation practices have increased soil salinity up to 9 dS/m at 20 cm 
soil depth in the Northern parts of the Valley. 

Furthermore, the indices used for soil salinity analysis in this study 
are only capable to detect topsoil salinity based on surface soil reflec-
tance. But, for irrigated agriculture, only topsoil salinity assessment is 
not sufficient and root zone salinity analysis, from where crops take up 
water, is of vital importance. Therefore, it is suggested to complement 
these results with root zone salinity analysis as recommended by Scu-
diero et al. (2016). 

3.3.4. Nitrogen stress 
Fig. 11 demonstrates that leaf nitrogen content (SRRE3) of bright 

spots is higher than the hot spots in all three crop types. So, farmers 
associated with bright spots have applied more nitrogen than the hot 
spot farmers. Fig. 11-A shows that the difference between SRRE3 of the 
bright and hot spots of the wheat crop is very small. This indicates that 
wheat bright spot farmers have applied slightly more nitrogen than the 
hot spots farmers, realising that nitrogen treatment has a limited impact 
on wheat yield (Karam et al., 2009). On the other hand, the SRRE3 of 
potatoes bright spots is prominently higher than the hot spots. This in-
dicates that potatoes bright spot farmers have applied more nitrogen, 
knowing that the potato yield can be significantly improved with in-
crease nitrogen application (Xing et al., 2016). Similarly, nitrogen doses 
significantly increase grape yield in the Mediterranean climate (Ozdemir 
et al., 2010), therefore, bright spot farmers have applied more nitrogen 
to obtain better table grapes yield as reflected in Fig. 11-C. 

The results show that better performers (bright spots) are associated 
with higher nitrogen applications. However, it is difficult to explicitly 
identify nitrogen contribution to better performance in proportion to 
other improved irrigation and agronomic practices adapted by the 
bright spot farmers. It is also worth mentioning that the uptake of 
phosphorous and potassium is also encouraged by nitrogen (Bloom, 
2015; Hemerly, 2016). Therefore, it is challenging to separate the direct 
and indirect influence of nitrogen application on crop yield. Thus, 
further correlation and comparative analysis between crop fields with 
different nitrogen applications and similar irrigation/agronomic prac-
tices can improve the results. Moreover, leaf nitrogen content (SRRE3) is 
calculated as an index. For practical purposes, the index value has to be 
translated to the leaf nitrogen in percentage and then related to the 
applied amount of nitrogen. The further suggested study will also help 
quantify the optimum amount and timing of nitrogen application for 
each crop. 

3.3.5. Effect of crop rotation on yield and WP 
Table 7 summarizes the t-test results for crop rotation influence on 

yield and WP. The results show that the t score for wheat WP (3.48) has 
exceeded the critical value (1.96), thus rotation has a statistically sig-
nificant impact on wheat WP. While the impact of rotation on wheat 
yield is not statistically significant, the t score (0.73) is lower than the 
critical value (1.96). However, wheat rotated with other crops has 
resulted in a 55 kg ha-1 increase in yield. This means that there is an 
increase in wheat yield, yet not statistically significant, as the t-test fails. 

Fig. 10. The influence of CVET on yield and 
WP: wheat (A), potatoes (B) and table grapes 
(C). The effect of bare-soil salinity on water 
productivity and yield: wheat (D) and potatoes 
(E). The dark red and larger circle shows a 
higher negative correlation, whereas blue and 
larger circle shows a higher positive correla-
tion. The legend represents the strength of 
correlation with 1 being the highest positive 
and − 1 highest negative. The non-significant 
correlations at p > 0.05 are marked with a 
cross. (For interpretation of the references to 
colour in this figure, the reader is referred to the 
web version of this article.)   
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The t score for both potatoes WP and yield are lower than the critical 
value. This implies that the crop rotation has neither significantly 
influenced potatoes yield nor WP. Even though the results are not sta-
tistically significant (t-tests have not been passed), the farmers prac-
tising crop rotation harvest 709 kg ha-1 more potatoes than the farmers 
engaged in mono-cropping. Also, WP is slightly higher in the rotated 
crop fields. 

Crop rotation increases crop yield because it improves soil structure 
and organic matter and controls pests (Nuñez et al., 2019). A study 
based on the data collected over the 20 years by Strauss (2017) has also 
revealed that wheat mono-cropping has the lowest yield than any other 
wheat crop succession. Our results also confirm that rotation has 
increased yield of both wheat and potatoes but not statistically signifi-
cant. An improvement in the methodology might signify the results: if 
the yield figures of fully rotated crop fields are compared with the fully 
mono-cropped field. Currently, partially rotated crop fields are also 
included in the analysis (see section ↱2.3.3.5 for methodology). More-
over, other factors like irrigation practices and inputs application also 
affect WP and yield and thus may diminish the influence of crop 
rotation. 

Furthermore, in this study, the crop rotation analysis is based on only 
two years of data. It can reflect the nutritional enrichment of the soil but 
not the breaking of the disease cycle. For the most appropriate cropping 
sequences and their impact on yield, it is recommended to analyse crop 
rotation data of four to five years (Mohler and Johnson, 2009). 

3.3.6. Effect of soil type on yield and WP 
According to the USDA soil classification, nine soil classes were 

identified in the Valley (see Fig. 12). However, the figure shows that 
crops under study—wheat, potatoes, and grapes—are grown only on 
Xeralf and Xerolls soil classes. The number of crop fields distributed over 
each soil type is presented in Fig. 13. Xeralf and Xerolls are respectively 
loam and clay loam soils based on soil texture triangle. The hydrological 

properties of both soil classes are presented in Table 8. 
To ensure the accuracy of the results, crop fields lying partially on 

both soil types were removed from the analysis. Thereafter, the t-tests 
were conducted to determine the statistical significance of the soil-type 
influence on yield and WP (Table 9). Results show that soil type 
significantly impacts wheat WP but not wheat yield (p > 0.05). Results 
also reveal that both yield and WP of potatoes are significantly 

Fig. 11. average leaf nitrogen content of bright and hot spots: wheat (A), potatoes (B) and grapes (C).  

Table 7 
Summary of the t-test for the effect of crop rotation on yield and WP.  

Effect of crop rotation on yield and WP 

Crop type  Yield (kg ha-1) Water productivity (kg m-3)  

Mono-cropping Crop rotation t-score Mono-cropping Crop rotation t-score 

Wheat N 120 424 0.73 (1.96)  120  424 3.48 (1.96) 
x  2772  2827  0.64  0.66 
σ 722  717  0.003  0.004 

Potatoes N 25 316 0.59 (1.96)  25  316 0.06 (1.96) 
x  25,479  26,188  5.39  5.41 
σ 181  181  0.9  0.82 
x  12,919  14,056  1.55  1.49 
σ 4381  3633  0.2  0.18 

The number of crop fields in the sample (N), the sample mean (x), Standard deviation (σ). In parenthesis critical value of t at probability (p) equal to 0.05. The 
statistically significant results are shown in bold. 

Fig. 12. Spatial distribution of wheat, potatoes and table grapes over the 
soil types. 
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influenced by soil type. Although the values are close to the critical 
threshold for significance, soil type is not a statistically significant factor 
influencing yield and WP for grapes. 

The influence of soil type can be ascribed to its hydrological prop-
erties. The plant available water (PAW) of the Xerolls (clay loam soil) 
= 200 mm m-1 is higher than the Xeralf (loam soil) = 167 mm m-1 (New 
Mexico State University, 2018). Therefore, in a water-scarce region, 
Bekaa Valley, the potatoes and grapes grown on the Xerolls soils have a 
higher yield than Xeralf. A proper irrigation scheduling can increase 
potatoes and grapes yield grown on Xeralf soils. For this purpose, the 
depth of irrigation is recommended to be reduced and frequency 
increased, as Xeralf soils cannot hold a larger quantity of water to sup-
port crop water demand for a longer time. 

3.4. Framework limitations 

The above-mentioned research findings with regard to yield and WP 
figures estimation, crop response to water stress, variability in ET, 
salinity stress, nitrogen application, and influence of crop rotation and 
soil type on performances compare well with the available information 
from the field and knowledge in literature. However, we acknowledge 
the limitations of this framework. 

This framework is mainly aimed at crop-field level analysis. There-
fore, the spatial resolution of the remote sensing data in relation to crop- 
field (polygons) size is a key consideration concerning the accuracy of 
results. In this study, crop fields smaller than one hectare is removed 
from the analysis based on data with a 30 m resolution. For a coarser 
resolution (250 m) soil data analysis the crop fields lying on multiple 
soil types are not considered for analysis. Removal of such crop fields 
from analysis reduces data population and affects the significance of the 
results, therefore, users are recommended to consider data with 
reasonable spatial resolution in relation to crop-field size. In this study, 
after data cleaning, the population of the data remained sufficient for 
analysis due to a reasonable resolution of the data as compared to the 
size of crop fields in the Valley. 

4. Conclusions 

To translate open-source remote sensing data to actionable infor-
mation by using a structured approach, a diagnostic framework has been 
developed. The realistic estimation of yield and ET figures with suffi-
cient spatial resolution to capture crop-field level variability enabled 
crop fields’ categorisation and their comparative analysis. The study 
revealed that four factors have negatively affected yield and WP in the 
Bekaa Valley (and they are): water stress at the critical crop growth 
stages; low within-farm irrigation uniformity; low nitrogen application; 
and improper irrigation schedule based on soil properties. It was also 
exposed that mono-cropping has reduced yield and WP, but the results 
are not statistically significant. Whereas topsoil salinity has neither 
influenced yield nor WP in the Valley. To improve Yield and WP in the 

Fig. 13. Frequency distribution of crop fields over the soil types.  

Table 8 
Soil hydrological properties.  

Soil layer depth (cm) Xeralf Xerolls 

Sanda) (%) Claya) (%) Soil type PAWb) (mm m-1) Sand (%) Clay (%) Soil type PAW (mm m-1) 

0  41  25 Loam  167  37  33 clay loam  200 
5  42  25 Loam  167  38  31 clay loam  200 
15  43  22 Loam  167  40  29 clay loam  200 
30  45  21 Loam  167  42  27 clay loam  200 
170  45  21 Loam  167  43  27 clay loam  200 

PAW is plant available water. 
Sources: a) Stokvis (2017); b) New Mexico State University (2018). 

Table 9 
Summary of the t-test for the effect of soil type on yield and WP.  

Crop type  Yield (kg ha-1) Water productivity (kg m-3)  

Xeralf soil Xerolls soil t-score Xeralf soil Xerolls soil t-score 

Wheat N 178 160 0.70 (1.96)  178  160 2.59 (1.96) 
x  2862 2808  0.64 0.66 
σ 739 667  0.063 0.063 

Potato N 101 105 2.05 (1.97)  101  105 6.80 (1.97) 
x  25,548 27,240  5.05 5.82 
σ 195 178  0.78 0.82 

Table grapes N 52 211 1.93 (1.96)  52  21 1.82 (1.96) 
x  12,919 14,056  1.55 1.49 
σ 4381 3633  0.2 0.18 

The number of crop fields in the sample (N), the sample mean (x), Standard deviation (σ). In parenthesis critical value of t at probability (p) equal to 0.05. The 
statistically significant results are shown in bold. 
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Valley investments should target the above four factors. While we 
acknowledge the errors and caveats inherent to the use of remote 
sensing data, we are confident that the application of the diagnostic 
framework provides reliable and useful results, since the analyses focus 
on the comparative analyses and less on the absolute value. 
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