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Abstract

The Food and Agricultural Organization of the United Nations (FAO) portal to monitor

water productivity through open-access of remotely sensed derived data (WaPOR) offers

continuous actual evapotranspiration and interception (ETIa-WPR) data at a 10-day basis

across Africa and the Middle East from 2009 onwards at three spatial resolutions. The

continental level (250 m) covers Africa and the Middle East (L1). The national level

(100 m) covers 21 countries and 4 river basins (L2). The third level (30 m) covers eight

irrigation areas (L3). To quantify the uncertainty of WaPOR version 2 (V2.0) ETIa-WPR

in Africa, we used a number of validation methods. We checked the physical consistency

against water availability and the long-term water balance and then verify the continental

spatial and temporal trends for the major climates in Africa. We directly validated ETIa-

WPR against in situ data of 14 eddy covariance stations (EC). Finally, we checked the

level consistency between the different spatial resolutions. Our findings indicate that

ETIa-WPR is performing well, but with some noticeable overestimation. The ETIa-WPR

is showing expected spatial and temporal consistency with respect to climate classes.

ETIa-WPR shows mixed results at point scale as compared to EC flux towers with an

overall correlation of 0.71, and a root mean square error of 1.2 mm/day. The level con-

sistency is very high between L1 and L2. However, the consistency between L1 and L3

varies significantly between irrigation areas. In rainfed areas, the ETIa-WPR is over-

estimating at low ETIa-WPR and underestimating when ETIa is high. In irrigated areas,

ETIa-WPR values appear to be consistently overestimating ETa. The relative soil mois-

ture content (SMC), the input of quality layers and local advection effects were some of

the identified causes. The quality assessment of ETIa-WPR product is enhanced by
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combining multiple evaluation methods. Based on the results, the ETIa-WPR dataset is

of enough quality to contribute to the understanding and monitoring of local and conti-

nental water processes and water management.

K E YWORD S

accuracy assessment, actual evapotranspiration, consistency, continental Africa, direct

validation, penman–Montieth, remote sensing, water resources management

1 | INTRODUCTION

Actual evapotranspiration (ETa) is the second largest process in the

terrestrial water budget after precipitation (PCP). ETa is also an essen-

tial component of plant growth and, therefore, the carbon cycle. Avail-

able water resources are becoming, or are already scarce, in many

basins worldwide (Degefu et al., 2018). The acceleration of the water

cycle from a climate change perspective will further influence water

availability not only for human consumption but also our food sources

(Rockström, Falkenmark, Lannerstad, & Karlberg, 2012). For this pur-

pose, accurate estimates of ETa are required for several management

tasks, including, but not limited to, water accounting, water footprint,

basin-wide water balances, irrigation, crop management and monitor-

ing of climate change and its impact on crop production. These activi-

ties require ETa at varying extents and spatio-temporal resolutions.

Remote sensing from satellites is perhaps the only feasible means

for quantifying and monitoring ETa for wide-areas (Glenn, Huete,

Nagler, Hirschboeck, & Brown, 2007). Several remote sensing

approaches exist to estimate ETa which include, surface energy bal-

ance methods (e.g. Allen, Tasumi, & Trezza, 2007; Bastiaanssen,

Menenti, Feddes, & Holtslag, 1998; Su, 2002), Penman–Monteith

methods (FAO, 2020a) and more empirical vegetation indices based

methods (Glenn, Huete, Nagler, & Nelson, 2008; Nagler, Glenn,

Nguyen, Scott, & Doody, 2013). Currently, there are a number of

open-access remote sensing-based ETa products based on remote

sensing data at the continental and global scale. Global products

include: the moderate resolution imaging spectroradiometer (MODIS)

based ETa (MOD16) product (Mu, Zhao, & Running, 2011), generated

every 8-days at 250 m; the Global Land Evaporation Amsterdam

Model (GLEAM) ETa (Miralles et al., 2011), generated daily at 0.25�;

the operational Simplified Surface Energy Balance (SSEBop) ETa

(Senay, Budde, & Verdin, 2011), generated monthly at 1 km; and the

Land Surface Analysis-Satellite Applications Facility (LSA-SAF)

Meteostat Second Generation (MSG) ETa (Ghilain, Arboleda, &

Gellens-Meulenberghs, 2011), generated daily at approximately 3 km.

Validation of these remote sensing products is an essential step in

understanding their applicability and characterize uncertainty. This uncer-

tainty can guide if the ETa product is suitable as input into different

water management activities along with the associated risk when making

a decision based on the product. Many studies exist that attempt to vali-

date large remote sensing-based ETa datasets. Most studies are focused

on one or two validation methods at one scale. The most common

validation methods are either point or pixel scale against ground-truth

data, like eddy covariance (EC) measurements (e.g. Mu et al., 2011), or

spatial intercomparison of a product over regions, land classes, biomes

(e.g. Mueller et al., 2011). Some authors validate multiple products

against each other for spatial and temporal patterns and against ground-

truth data (e.g. Hu, Jia, & Menenti, 2015; Nouri et al., 2016). Liu

et al. (2016) evaluated basin-scale ETa estimates against the water bal-

ance method. Velpuri, Senay, Singh, Bohms, and Verdin (2013) compared

MOD16 (1 km) at point scale to EC and at basin scale to the water bal-

ance. Other than a few occasions, for example, Velpuri et al. (2013),

these validation efforts often failed to evaluate the product at multi-

scale, from pixel to basin or region.

The best-practice validation strategies of big remote sensing

datasets have been proposed by Zeng et al. (2015, 2019). They recom-

mend multi-stage validation activities that include combinations of direct

validation, physical validation and cross-comparisons. In practice, many

developers of remote sensing products include all or at least a combina-

tion of these activities during their validation. To name a few, these

include the MODIS MODLAND product (Morisette, Privette, &

Justice, 2002; Morisette, Privette, Justice, & Running, 1998); Copernicus

Global Land Service products Dry Matter Productivity (Swinnen, Van

Hoolst, & Toté, 2015); and ASTER land surface temperature (Schneider,

Ghent, Prata, Corlett, & Remedios, 2012).

In regions such as Africa, where little observational data is avail-

able, validation should utilize all available avenues for ascertaining

product quality, with a multi-step and -phase validation strategy that

includes direct validation (with ground measurements), physical con-

sistency check and cross-comparisons. As such, the limitations due to

the sparseness of available data are reduced, and the product quality

is understood from a multi-scale perspective, by using validation best-

practice and combining multiple validation techniques.

The latest available database of continental products, released

in 2019, for Africa and the Middle East, is now available on FAO

portal to monitor water productivity through open-access of

remotely sensed derived data (WaPOR; https://wapor.apps.fao.

org/home/WAPOR_2/2). It provides the highest available spatial

resolution for an operational open-access ETa and interception

(ETIa-WPR) product at the continental scale. This article presents a

multi-scale validation of the version 2 (V2.0) ETIa-WPR. The results

from each validation procedure were analysed individually and then

as a whole to determine trends and draw conclusions of the prod-

uct quality.
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2 | DATA AND METHODS

2.1 | The dataset

The analysis dataset is the ETIa-WPR V2.0 products available on the

WaPOR portal (https://wapor.apps.fao.org/home/WAPOR_2/1). The

ETIa-WPR is based on a modified version of the ETLook model

(ETLook-WaPOR) described in Bastiaanssen, Cheema, Immerzeel, Mil-

tenburg, and Pelgrum (2012). The ETLook-WaPOR model uses

Penman–Monteith to estimate ETa adapted to remote sensing input

data (FAO, 2020a). The Penman–Monteith approach uses the com-

bined approaches of the energy balance equation and the aerody-

namic equation and is described in the FAO-56 drainage paper (Allen,

Pereira, Raes, & Smith, 1998). The ETIa-WPR defines soil evaporation

and transpiration separately using Equations (1) and (2). The intercep-

tion is a function of the vegetation cover, leaf area index (LAI) and

PCP. The ETI-WaPOR is then calculated as the sum of evaporation,

transpiration and interception.

λE =
δ Rn,soil−Gð Þ+ ρair CP esat−eað Þ

ra,soil

δ+ γ 1+ rs,soil
ra ,soil

� � , ð1Þ

λT =
δ Rn,canopyð Þ+ ρair CP esat−eað Þ

ra,canopy

δ+ γ 1+ rs,canopy
ra,canopy

� � , ð2Þ

where E and T (mm/day) are the evaporation and transpiration,

respectively and λ is the latent heat of vaporization. Rn

(MJ m−2 day−1) of the soil (Rn,soil) and canopy (Rn,canopy) is the net radi-

ation and G (MJ m−2 day−1) is the ground heat flux. ρair (kg/m3) is the

density of air, CP (MJ kg−1 �C) is the specific heat of air,(esat − ea)

(kPa) is the vapour pressure deficit (VPD), ra (s/m) is the aerodynamic

resistance, rs (s/m) is the soil resistance, or canopy resistance when

using the Penman–Monteith-model to estimate evaporation or

transpiration, respectively. δ = d(esat)/dT (kPa/�C) is the slope of the

curve relating saturated water vapour pressure to the air temperature,

and γ is the psychometric constant (kPa/�C). This approach partitions

the ETIa-WPR to evaporation and transpiration using the modified

versions of Penman–Monteith, which differentiate the net available

radiation and resistance formulas based on the vegetation cover

according to the ETLook model (Bastiaanssen et al., 2012). A major

difference between ETLook-WaPOR and ETLook is the source of

remote sensing data for the soil moisture. In the original ETLook soil

moisture is derived from passive microwave, and in the WAPOR

approach soil moisture is derived from land surface temperature (LST).

The WaPOR database provides ETIa-WPR in three spatial resolutions

dependent on the location and extent. The products available specifi-

cally for Africa are shown in Table 1 and are available online on the

WaPOR portal (https://wapor.apps.fao.org/home/WAPOR_2/1).

Interception (I) is the process where the leaves intercept rainfall.

Intercepted rainfall evaporates directly from the leaves and requires

energy that is not available for transpiration. Interception (mm/day) is

a function of the vegetation cover, LAI and PCP.

I=0:2 Ilai 1−
1

1+ c
0:2 Ilai

 !
: ð3Þ

Cveg is the vegetation cover and is calculated from the normalized

difference vegetation index (NDVI) and Ilai is the leaf area index

converted from cveg.

Datasets (including intermediate datasets) available for the valida-

tion include relative soil moisture content (SMC)—a wetness indicator,

NDVI, solar radiation (SR), NDVI quality layer, LST quality layer, PCP

and reference evapotranspiration (RET) (Table 2). The producers of the

datasets in the WaPOR portal—the FAO's Remote sensing-based data-

base for the monitoring of agricultural water and land productivity in

Africa and the Middle East (FRAME) Consortium, led by eLEAF and

comprised of The Flemish institute for technological research (VITO),

TABLE 1 Description of the WaPOR V2.0 ETIa-WPR data products, available on the WaPOR portal, used for validation in Africa
(FAO, 2020b)

Spatial
resolution (m)

Temporal
resolutiona Spatial extent (in Africa)

Satellite (spatial
resolution|return period)

Level I (L1) 250 Dekadal Continental Africa MODIS (250 m|1-day)

Level II (L2) 100 Dekadal Morocco, Tunisia, Egypt, Ghana, Kenya,

Niger, Sudan, Mali, Benin, Ethiopia,

Rwanda, Burundi, Mozambique, Uganda

MODIS (250 m|1-day)b

PROBA-V (100 m|2-day)b

Level III (L3) 30 Dekadal Awash, Ethiopia

Koga, Ethiopia

Office du Niger, Mali

Zankalon, Egypt

Landsat (30 m|16-day)

Abbreviations: MODIS, moderate resolution imaging spectroradiometer; WaPOR, water productivity through open-access of remotely sensed

derived data.
aDekadal is approximately 10 days. It splits the month into three parts, where the first and second dekads are 10 days and the third dekad covers the

remaining days in the month.
bMODIS is resampled to 100 m up to 2013 and PROBA-V is used from March 2014.
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International Institute for Geo-Information Science and Earth Observa-

tion at the University of Twente (ITC-UTWENTE) and WaterWatch—

provided the SMC and NDVI layers for the validation. All other layers

are available on the WaPOR portal. The NDVI quality layer and the LST

quality layer are indicators of the quality of the input satellite data. The

NDVI quality layer provides the gap, in days, to the nearest valid obser-

vation for that variable. The LST quality layer provides the number of

the days between the date of the data file and the earlier remote sens-

ing observation on which the data is based.

WaPOR further relies on input from weather data, air tempera-

ture, relative humidity wind speed, which are obtained from Modern-

Era Retrospective analysis for Research and Applications (MERRA) up

to the start of 21 February 2014 and the Goddard Earth Observing

System (GEOS-5) after 21 February 2014 (Rienecker et al., 2011). The

weather data is resampled using a bilinear interpolation method to the

250 m resolution. The temperature is also resampled based on eleva-

tion data.

2.2 | Validation approach and workflow

The validation approach comprises three components, physical valida-

tion, direct validation and level consistency (Figure 1). The physical

validation and direct validation were undertaken on the L1 product for

the period 2009–2018. The physical validation (Section 2.3) includes an

assessment of the water balance and water availability (Section 2.3.1)

and a spatial and temporal consistency check (Section 2.3.2) for the

extent of Africa. The water balance utilizes other existing continental

datasets to complete the water balance and is therefore also consid-

ered cross-validation. The spatial and temporal consistency checks if

spatial and temporal patterns were being captured. The direct valida-

tion (Section 2.4) involves a comparison to ETa estimations from EC

stations. The level consistency (Section 2.5) checks for the consistency

between levels and therefore indicates if the quality of the L1 product

is representative of the L2 and L3 products.

2.3 | Physical consistency

2.3.1 | Water balance and water availability

The basin-scale performance of ETIa-WPR is analysed for 22 major

hydrological basins of Africa (Lehner & Grill, 2013) through three

approaches (Figure 2). First, the ETIa-WPR was compared to the PCP

on an annual basis to analyse the water consumed through ETIa to

the water available from PCP.

TABLE 2 Description of the intermediate and product datasets used for the evaluation of ETIa-WPR (FAO, 2020a)

Dataset Spatial|Temporal resolution/s Data product/sa Sensor/sb

NDVI

SMC

Available for L1, L2 and L3 (per Table 1) MOD09GQc, PROBA-Vd, Landsat 5,7,8e

MOD09GQc, PROBA-Vd, Landsat 5,7,8e
MODISc, PROBA-Vd, Landsate

MODISc, PROBA-Vd, Landsate

SR SRTM (DEM) MSG

LST quality layer As for L1; Table 1 MOD11A1, MYD11A1 MODIS

NDVI quality later As for L1; Table 1 MOD09GQc, PROBA-Vd, Landsat 5,7,8e MODISc, PROBA-Vd, Landsate

PCP 5 km|daily CHIRPS v2, CHIRP TRMM, GPM

RET 25 km|daily SRTM (DEM) MSG, MERRA/GEOS-5

Abbreviations: LST, land surface temperature; NDVI, normalized difference vegetation index; PCP, precipitation; RET, reference evapotranspiration; SMC,

soil moisture content; SR, solar radiation.
aCHIRPS, Climate Hazards Group Infrared Precipitation with Station Data; MOD09GQ, MODIS/Terra Surface Reflectance Daily L2G Global 250 m SIN

Grid; MOD11A1, MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1 km SIN Grid; MYD11A1, MODIS/Aqua Land Surface Tempera-

ture/Emissivity Daily L3 Global 1 km SIN Grid; SRTM, Shuttle Radar Topography Mission (DEM, Digital Elevation Model—90 m).
bGEOS-5, Goddard Earth Observing System; GPM, Global Precipitation Measurement; Landsat, Landsat Satellite 5, 7 and 8; MERRA, Modern-Era Retro-

spective Analysis For Research And Applications; MODIS, Moderate Resolution Imaging Spectroradiometer; PROBA-V, Project for On-Board Autonomy—
Vegetation; MSG, Meteosat Second Generation (used for transmissivity); TRMM, Tropical Rainfall Measuring Mission.
cL1 data product and sensor.
dL2 data product and sensor.
eL3 data product and sensor.

F IGURE 1 Validation
approach used in the validation of
the ETIa-WPR product in Africa
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Second, the basin-scale water balance approach compared the

long-term ETIa-WPR product to the long-term ETa derived from the

water balance (ETa-WB). In many studies, the long-term water bal-

ance (>1 year) for large basins assume a negligible change in storage

(Hobbins, Ramírez, & Brown, 2001; Wang & Alimohammadi, 2012;

Zhang et al., 2012). The long-term water balance, taken from 2009 to

2018 in this case, is therefore defined using Equation (2).

ETa-WB mm=yearð Þ=PCP m=yearð Þ–Q mm=yearð Þ, ð4Þ

where PCP is the long-term precipitation and Q is the long-term basin

runoff or streamflow and the ETa-WB is the long-term ETa derived

from the water balance. The PCP product found in the WaPOR portal

was obtained from the Climate Hazards Group Infrared Precipitation

with Stations (CHIRPS) dataset (Funk et al., 2015). The long-term Q

was obtained from the Global Streamflow Characteristics Dataset

(GSCD) (Beck, De Roo, & Van Dijk, 2015). The GSCD consists of

global streamflow maps, including percentile and long-term mean Q at

a 0.125� resolution, providing information about runoff behaviour for

the entire land surface including ungauged regions.

Third, the ETIa-WPR and PCP annual values were compared to

the average ETa from MODIS Global Evapotranspiration Project (ETa-

MOD16) for the period 2000–2013 (Mu, Heinsch, Zhao, &

Running, 2007; Mu, Zhao, & Running, 2013) and to values from the

literature for basins where data is available. The ETa-MOD16 product

is also based on the Penman–Monteith equation and considers the

surface energy partitioning process and environmental constraints on

ETa. The algorithm uses both ground-based meteorological observa-

tions and remote sensing observations from MODIS. Basins were not

included in the comparison if the ETa-MOD16 data covered less than

80% of the basin area.

2.3.2 | Spatial and temporal consistency

The temporal and spatial trends were observed over the African conti-

nent in space and time by observing mean ETIa-WPR, SMC and NDVI

for all climate zones during the study period on a dekadal basis. The

Koppen–Geiger classification (Figure 2) is used to consider the mean

dekadal values for the main climatic zones in Africa (Kottek, Grieser,

Beck, Rudolf, & Rubel, 2006). A sample size of 30,000 stratified ran-

dom pixels is used to represent the continental. This corresponds to

less than 0.01% of the total image, however, is considered suitable to

represent seasonal trends for the major climate zones. The arid or

desert class—B—dominates Africa (57.2%), followed by the tropical

class—A (31.0%) and then warm temperate—C (11.8%). The largest

sample count corresponds to the largest climatic zones, with a linear

1:1 line representing area to count. The data is further disaggregated

F IGURE 2 Left—A total of 22 major hydrological basins of Africa used in the water balance approach, where the base map is the annual L1
PCP in 2018, available on the WaPOR portal. Right—Koppen–Geiger climate classification and eddy covariance stations where Af, tropical
rainforest; Am, tropical monsoon; As, tropical dry savanna; Aw, tropical wet savanna; BSh, arid hot steppe; BSk, arid steppe cold; BWh, arid hot
desert; BWk, arid cold steppe; Cfa, temperate without dry season hot summer; Cfb, temperate without dry season warm summer; Csa, temperate
dry summer hot summer; Csb, temperate dry summer warm summer; Cwa, temperate dry winter hot summer; Cwb, temperate dry winter–warm
summer. Note some stations are in close proximity and are there for represented by one point on the map (e.g. NE-WAM and NE-WAF). PCP,
precipitation; WaPOR, water productivity through open-access of remotely sensed derived data
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based on the northern and southern hemispheres to account for

opposite seasonal patterns.

2.4 | Direct validation

The ETIa-WPR is compared to the in situ ETa from EC fluxes (ETa-EC)

at a dekadal scale using 14 locations (13 across Africa and 1 in the

Spain extension area) (Figure 2). The country, station code, vegetation,

climate zones and available data for comparison—for both WaPOR

and the local site, are shown in Table 3. The majority of EC sites are in

shrubland or savannas. Egypt stations (EG), the NG-WAM station and

GH-ANK station which are located in an irrigated area, agricultural

land and forested areas, respectively.

The SA-SKU, SNDHR, GH-ANK, SD-DEM, CG-TCH, ZM-MON

and ES-SCL EC sites were obtained from the global Fluxes Database

Cluster Dataset (FLUXNET). The FLUXNET 2015 (https://fluxnet.

fluxdata.org/) dataset consist of open-source high-quality data prod-

ucts collected from multiple regional networks. The NE-WAM, NE-

WAF and BN-NAL sites were obtained from the African Monsoon

Multidisciplinary Analysis—Coupling the Tropical Atmosphere and the

Hydrological Cycle (AMMA-CATCH) project, aiming at establishing

long-term observations on the climate and the environment over

Western Africa. KWSTI is operated by the ITC-UTWENTE in partner-

ship with Water Resources Management Authority (WRMA), the

Kenya Wildlife Services (KWS) and Egerton University. The EG-ZAN,

EG-SAA and EG-SAB sites were operated through the University of

Tsukuba, in partnership with Cairo University, National Water

Research Center, Delta Barrage, Qalubia, Egypt and the Agriculture

Research Center, Giza, Egypt in the Nile Delta. These irrigated sites in

the Nile Delta, were under rotation with three major summer crops—

rice, maize and cotton—and four major winter crops—wheat, berseem,

fava beans and sugar beet.

ETIa-WPR for L1 (250 m) were spatially averaged over a 3 × 3

pixel window surrounding the EC station, based on the assumption

that the window represents the measurement footprint of the EC sta-

tion. The ETa-EC data was derived from LE flux and then aggregated

temporally to dekadal averages to match the temporal resolution of

the ETIa-WPR products. Intermediate products, including WaPOR

NDVI, SMC and the NDVI and LST quality layers were analysed along

with the ETa trends to identify possible sources of error. Reworking

the LE flux data to daily values was done [accounting for NaN, non-

removed spikes, early morning (dawn) and evening (day-night inver-

sions), dew spiking, etc.] which are not necessarily removed by the

standard Eddy Covariance pre-processing software's (converting very

high frequency sonic 30-s and gas analyser measurements to 30-min

interval fluxes).

The EC method, as a validation method for remote sensing, con-

tains its own inherent errors of up to 10–30%. This uncertainty is

related to a number of causes included scale mismatch (where the

area of the footprint compared to the remote sensing area compared

only partially overlaps), canopy heterogeneities, and measurement

problems (Allen, Pereira, Howell, & Jensen, 2011). However, it is fairly

common for authors to use EC in heterogeneous landscapes in both

validating and driving large remote sensing-based studies (e.g. ETa—

Mu et al., 2011; ETa—Velpuri et al., 2013; Sjöström et al. 2013).

The ETIa-EC was also compared against in situ VPD (VPD-EC)

and RET (RET-EC). In WaPOR, the VPD and RET are estimated using

TABLE 3 EC site data and descriptions

Site Country Ecosystem Climate
Data-years
used References

SA-SKU South Africa Savannas wooded grassland BSh 2009; 2011 Majozi et al. (2017a)

SN-DHR Senegal Savannas BWh 2010–2013 Tagesson et al. (2015)

SD-DEM Sudan Savannas BWh 2009 Ardö, Mölder, El-Tahir, and Elkhidir (2008)

NE-WAM Niger Crops (millet, bare soil, tiger

bush)

BSh 2009–2012 Boulain, Cappelaere, Séguis, Favreau, and

Gignoux (2009); Ramier et al. (2009)

NE-WAF Niger Crops (fallow; shrubs) BSh 2010–2011

ES-SCL Spain Pasture and Scatter oak

trees

Csa 2016–2017 Maria P. Gonzalez (personal communication)

GH-ANK Ghana Evergreen broadleaf forests Am 2011–2014 Chiti, Certini, Grieco, and Valentini (2010)

BN-NAL Benin Guinean savanna vegetation Aw 2009 Mamadou et al. (2014)

KWSTI Kenya Open shrubland Cfb 2012–2014 Odongo et al. (2016)

CG-TCH Republic of

Congo

Savanna grassland Aw 2009 Merbold et al. (2009)

ZM-MON Zambia Savanna woodland Cwa 2009

EG-ZAN Egypt Irrigated agriculture BWh 2011–2013 Sugita, Matsuno, El-Kilani, Abdel-Fattah, and

Mahmoud (2017)

EG-SAA Egypt Irrigated agriculture BWh 2011–2013

EG-SAB Egypt Irrigated agriculture BWh 2011–2013

Abbreviation: EC, eddy covariance.
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GEOS-5 (VPD and RET) and MSG (RET only), as compared to being

derived from satellite images. GEOS-5 and MSG are available daily

and satellite image gaps do not influence the quality of the VPD and

RET quality. The RET-EC was estimated using the same method

adopted by WaPOR (FAO, 2020a), which is based on FAO-56 (Allen

et al., 1998), and was derived from in situ (EC) meteorological data.

RET−EC =
δ Rn−Gð Þ+ ρair CP esat−eað Þ

ra

δ+ γ 1+0:34 � rsra
� � , ð5Þ

where rs is taken as 70 s/m, ra is taken as 208/uobs and uobs is the

observed wind speed (m/s) at 10 m.

2.5 | Level consistency

L3 and L2 ETIa-WPR were compared to the L1 data for the period of

2009–2018 on a dekadal basis. A bilinear resampling method was

used to spatially aggregate the high-resolution L3 and L2 layers to the

resolution of the coarse L1 layer. A random stratified sample of

30,000 points over the entire L2 extent is used for the comparison of

the L1 and L2. The L1 and L3 were compared over the entire L3

extent of the Awash, Zankalon, Office du Niger (ODN) and Koga L3

irrigation areas for all pixels. Table 4 shows the description of each L3

irrigated area. The EC station at Zankalon is located in a L3 area.

Therefore, as part of the level consistency, all three levels were also

compared to the ETa-EC at this station. The method described in Sec-

tion 2.4 was used to extract the L3 and L3 ETIa-WPR at the station.

3 | RESULTS

3.1 | Physical consistency

3.1.1 | Water balance and water availability

The annual ETIa-WPR divided by the annual PCP (ETIa/PCP) during

2009–2018 for Africa is shown in Figure 3. The annual ETIa-WPR

exceeds the annual PCP (ETIa/PCP >1) on 55% occasions for all basins

over 10 years study period. The highest number of exceedances occur

in 2014 and 2016 (64%), and the lowest number of exceedances

occur in 2018 (27%). The majority of these exceedances, 66%, are by

less than 10%. The average ETIa-WPR to PCP ratio for the continent

of Africa is 0.93. The lowest ratio is in 2010, 0.87, and the highest is

in 2015, 0.97. These ratios are significantly higher than the suggested

average, 0.65, of ETa to PCP ratio over the global terrestrial surfaces

(McDonald, 1961). This ratio is expected to be lower in dry regions or

parts of the continent. Except for Lake Chad Basin, basins in the Cen-

tral, North and West of Africa have ETIa-WPR less than PCP. Most of

the exceedances (ETIa > PCP) occur in the South of Africa and on the

Horn of Africa.

The basins have the highest ETIa-WPR/PCP ratio in 2015, partic-

ularly in Southern Africa. All basins south of Zambezi Basin show a

significant decrease in PCP from 2014 to 2015, including a

246, 98 and 238 mm/year drop in Limpopo, Orange and the South

Interior respectively. In the same timeframe, the largest ETIa-WPR

change is in Limpopo, with a 17 mm/year increase, followed by the

South Atlantic Coast with a 35 mm/year decrease. The decrease in

PCP is attributed to the drought in this region during this period as a

result of the El Nino climatic event (USAID, 2016). However, ETIa-

WPR does not seem to respond appropriately to these extreme drops

in PCP, which is likely because the SMC does not show any significant

response to reduced PCP in this period. The PCP drop in 2015 in

drought affected basins ranged from 16.8 to 39.1% of the

2009–2018 average while the SMC drop only ranged from 2.2 to

6.0%. Therefore, the ETIa-WPR is not being properly limited by

reduced water availability in the soil.

The average (av.), minimum (min) and maximum (max) annual

ETIa-WPR and PCP values for the 2009–2018 period are shown in

Table 5. Where literature values were available, annual estimates of

ETIa-WPR and PCP are compared with historical estimates on annual

ETa and PCP, with ETa from MODIS Global Evapotranspiration Pro-

ject (ETa-MOD16) and with the ETa-WB. In most cases, the ETIa-

WPR is larger than the ETa values in literature, from the water balance

and from MOD16. The PCP falls within the range of literature for all

but three basins. The PCP is less than that found in literature in the

Limpopo and Orange Basin, which is also likely due to the drought in

this region which occurred after the estimates as reported in the liter-

ature. It is also important to note that the Congo River Basin, Central

West Coast and west coast basins have vast areas of low-quality

NDVI and LST layers for much of the year. They are making the

TABLE 4 Description of L3 irrigated scheme areas used in the product evaluation

Awash Koga Zankalon Office du Niger

Average plot size of

irrigated area (ha)

10.40 0.24 0.21 5.93

SD plot area (ha) 6.24 0.12 0.13 0.46

Major crops in the irrigated

area

Major: sugarcane. Minor:

haricot, crotalaria

Wheat, rice, maize, cotton, sugar beet,

berseem, fava bean, tomato, potato

Wheat, maize, potato,

onion, cabbage, barley

Rice, sugarcane

Vegetation in the

non-irrigated area

Savannah NA Rainfed agriculture: maize,

millet, teff, barley

NA
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annual mean ETIa-WPR values derived from remote sensing much less

reliable in these basins.

The ETIa-WPR and ETa-MOD16 are plotted against the ETa-WB

in Figure 4. The relationship between both the ETIa-WPR and ETa-

MOD16 products show strong linear relationships with ETa-WB.

While the ETa-WPR product has a better R2, the ETa-MOD16 has a

lower bias. The ETIa-WPR shows a slightly positive bias, which is

increasing with increasing ETa-WB. The absolute difference between

F IGURE 3 Annual ETIa-WPR/PCP in L1 for the 22 major hydro-basins in Africa for the period 2009–2018. PCP, precipitation
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the ETIa-WPR and the ETa-WB is typically increasing with increasing

ETa-WB. The relative differences between ETIa-WPR and ETa-WB

are lower at high ETa values. The absolute difference and relative dif-

ference between ETIa-WPR and ETa-MOD16 were greater at lower

ETa-MOD16. The absolute relative difference, between ETIa-WPR

and ETa-WB typically decreased with increasing PCP. The long-term

ETIa-WPR is larger than the ETa-WB on 13 out of 22 basins. The Q

represented from 4.4% (South Interior) up to 47.0% (Central West

Coast), with a median of 18.6%, of the long-term PCP. The Q is

greater in basins with greater ETIa-WPR and PCP. In basins where the

long-term average Q is less than 150 mm/year (18 basins), the relative

difference between ETa estimates ranged from −20 to +70%. When

the long-term average Q is greater than 200 mm/year the relative dif-

ference ranged from −12 to +20%.

The long-term (2009–2018) ETIa-WPR for basins in Africa is

estimated to be 590.6 mm/year, which is 12.2% larger than the

long-term ETa-WB, estimated to be 518.7 mm/year. The 2010 ETa

average for the entire WaPOR extent is compared against ETIa-

WPR V1 and other models in Figure 5. These values are sourced

from the WaPOR V1 validation report (FAO and IHE Delft, 2019)

and include three remote sensing-based surface energy balance

models—Atmosphere-Land Exchange Inverse (ALEXI), Surface

TABLE 5 The annual PCP and ETIa (min and max) of major basins derived from the WaPOR database for the period 2009–2018 compared
against the available values in literature and the ETa-WB (all values are mm/year)

Basin PCPWaPOR av. (min|max) PCP literature ETIa-WPR av. (min|max)a ETa-MOD16a ETa literature ETa-WB

Lake Chad Basin 374 (322|442) 236–4511–3 437 (399|471) — 216–3631,3 346

Nile Basin 649 (538|706) 512–6931,2,4 714 (685|737) — 416–5151,4 —

Senegal River Basin 548 (472|630) 252–5501,2 529 (475|589) — 258–3231 468

Rift Valley 762 (682|887) 6502 771 (727|803) 568 — 591

Niger River Basin 679 (625|754) 423–7401–3 618 (583|665) — 329–4101,3 553

Shebelli and Juba Basin 474 (400|602) 435–5182,5 615 (559|698) 455 504 367

Central West Coast 1847 (1,598|1,908) 1,7852 1,108 (1,046 |1,177) 1,159 — 959

Congo River Basin 1,517 (1,452 |1,600) 1,165–1,6891,2 1,318 (1,253 |1,401) 949 1,004–1,0981,6 —

East Central Coast 966 (876|1,135) 9602 970 (928|1,038) 872 — 784

South West Coast 861 (697|984) 9402 968 (886|1,078) 758 — 676

Zambezi Basin 928 (772|1,094) 732–1,0161,2,7 1,006 (942|1,069) 627 637–7981,7 —

Limpopo Basin 519 (326|683) 530–6481,8 770 (662|845) 396 516–5691 474

Orange Basin 303 (213|368) 325–3931,2 320 (272|388) — 306–3351 280

Note: 1Voisin, Wood, and Lettenmaier (2008); 2FAO (1997); 3Li, Coe, and Ramankutty (2005); 4The Nile Basin Initiative Secretariat (2014); 5Sebhat and

Wenninger (2014); 6Chishugi and Alemaw (2009); 7Matondo and Mortensen (1998); 8LBPTC (2010).

Abbreviations: PCP, precipitation; WaPOR, water productivity through open-access of remotely sensed derived data.
aav(min|max) are the yearly average, minimum and maximum for that basin.

F IGURE 4 The relationship between long-term average annual ETIa-WPR (mm/year) (left) and the ETa-MOD16 (right) plotted against
average annual ETa-WB (mm/year) for the 22 major hydrological basins of Africa. The black dotted line is the linear regression and the red line is
the 1:1 line
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Energy Balance System (SEBS), and SSEBop v4, a remote sensing-

based Penman–Monteith approach—MOD16, a remote sensing-

based artificial neural network product—Water, Energy, and Carbon

with Artificial Neural Networks (WECANN), a hybrid remote

sensing-based model—ETMonitor, a land surface models with

remote sensing data assimilation—Global Land Data Assimilation

System (GLDAS), a Priestley-Taylor approach driven by meteoroidal

data—GLEAM v3.2, and, an upscaled FLUXNET product—Multi-Tree

Ensemble (MTE). The ALEXI and SSEBop v4, both remote sensing-

based surface energy balance models, have a similar performance,

519 and 497 mm/year, respectively. All other approaches, including

SEBS, MTE, ETMonitor, WECANN, MOD16, GLEAM v3.2 and

GLDAS, report a lower average annual ETa in 2010, ranging from

11% lower (GLDAS) to 38% lower (GLEAM). As compared to the

CHIRPS PCP product, ETa as estimated from these products are

consuming 54% (GLEAM) to 78% (GLDAS) of the PCP. Compared to

F IGURE 5 2010 continental ETa of
various models (values taken from FAO
2019) and ETIa-WPR. The orange dotted
line represents the ETIa-WPR and was
used for reference to other datasets

F IGURE 6 Times series of average ETIa-WPR (orange line), SMC (blue line) and NDVI (green line) in tropical wet savanna (Aw), hot arid desert
(BWh) and sub-tropical highland climate classes (Cwb) in the northern hemisphere (left) and southern hemisphere (right). Note that BWh has a
different ETIa-WPR y-axis range to Aw and Cwb. NDVI, normalized difference vegetation index; SMC, soil moisture content
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the models with higher ETa that are consuming 83% (SSEBop) to

87% (ALEXI).

3.1.2 | Spatial and temporal consistency

The mean ETIa-WPR, SMC and NDVI were plotted for all climate

zones for the northern and southern hemisphere. Figure 6 shows

some examples of the largest sub-zones per main climate; wet

tropical-savanna (Aw), arid-desert-hot (Bwh) and temperate dry

winter–warm summer (Cwb). The average ETIa-WPR (y-axis on the

left), and SMC and NDVI (y-axis on the right) are reported from dekad

0901 (2009—dekad 1) to 1836 (2018—dekad 36).

The temporal trend for each climate zone is inversed between

hemispheres, reflecting the opposite seasons between hemispheres.

For example, peak ETIa-WPR values occur around dekad 19 and

trough values occur around dekad 01 in the northern hemisphere.

Conversely, in the southern hemisphere, peak ETIa-WPR values occur

around dekad 01 and trough values occur around dekad 19. The

inverse pattern highlights the need to separate climate zones based

on hemisphere, as these trends would otherwise cancel out and flat-

ten out temporal trends.

The Aw zones are maintaining the highest ETIa-WPR values and

shows the lowest relative variability throughout the year. The BWh

zones consistently have lower ETIa-WPR values. The BWh in the south-

ern hemisphere is higher than in the northern hemisphere, and the rela-

tive intra-annual variation is greater. The ETIa-WPR in these zones

follows a clear seasonal pattern, that is not evident from the NDVI or the

SMC. The ETIa-WPR is predominantly governed by evaporation in these

arid zones, which is indicated by the low NDVI all year round. The tem-

perate zone, Cwb, shows the greatest intra-annual variability in ETIa-

WPR, which reflects the more dramatic climatic seasonal variation in

these years. ETIa-WPR in Cwb in the northern hemisphere shows two

peaks per year. The two seasons are consistent with the zones' location

in the Rift Valley of Eastern Africa. The Rift Valley experiences two wet

seasons as influenced by the intertropical convergence zone

(Hills, 1978). The wet months are March through May and October

through December with higher PCP in the March through May period.

ETa is either controlled by available energy or available water. All

zones, other than BWh and Aw in the northern hemisphere, show a

clear relationship between the ETIa-WPR and the NDVI and SMC. The

Aw zone in the northern hemisphere shows two ETIa-WPR peaks a

year, however, the SMC and NDVI show one. Despite water being

available through SMC in this zone during peak NDVI, there is a drop in

ETIa-WPR, suggesting that during this period the ETIa-WPR is limited

by solar radiation or available energy. Although not shown here—ETIa-

WPR in BWh in the northern hemisphere follows the same seasonal

trend as radiation. In the Aw zone in the northern hemisphere, the net

radiation peaks several dekads before the NDVI and SMC, resulting in a

double-peaked ETIa-WPR. The ETIa-WPR in BWh zone shows a clear

seasonal trend, despite no clear seasonal NDVI or SMC trend. There-

fore, it is governed by the amount of solar radiation which has a clear

yearly trend at the latitudes within the BWh zone.

The SMC appears high in the arid zones, particularly considering

such low NDVI in these regions. For example, in BWh in the northern

and southern hemisphere, the mean SMC for the climate zone, across

all dekads in the study period, never drops below 0.3 and 0.32,

respectively. These regions have high potential energy and are typi-

cally water constrained. As the SMC is high in these areas with high

energy availability, it is resulting in a higher than expected ETIa-WPR

in these zones. The SMC, NDVI or ETIa-WPR do not seem to be

responding to the drought in the region, where decreasing PCP values

should result in reduced SMC and ETIa-WPR during the 2014–2015

period. The low NDVI values indicate that it is the evaporation com-

ponent (driven by SMC, solar radiation and soil resistance) that is

being overestimated in these dry regions.

3.2 | Direct validation

The agreement between ETIa-WPR and ETa-EC is shown in Figure 7

and Table 6. Figure 7 shows the time series of ETIa-WPR and ETa-EC

for all available in situ data from all EC stations. Table 6 shows the

corresponding metrics for each station, including correlation (r), root

mean square error (RMSE), bias, mean average percent error (MAPE)

the coefficient of determination (R2) and the average NDVI and LST

quality for the comparison period. A good overall correlation (r = 0.71)

is found between all sites and observations. Substantial variations

existed between sites. Consistency in results is seen between years

for most sites. The ETIa-WPR typically captured seasonality at most

sites.

The best-performing sites in terms of correlation and R2 are SN-

DHR, SD-DEM, EG-ZAN, EG-SAA and EG-SAB. These sites are char-

acterized by arid or semi-arid climates and short vegetation. SN-DHR

and EG-SAB also have the best performance in terms of MAPE. The

ETIa-WPR closely follows the ETa-EC at the SN-DHR and SD-DEM

site, and both respond quickly to rainfall events. At each of these sites

the WaPOR SMC and NDVI are well related to both the ETa-EC and

ETIa-WPR. For example, the R2 for the SMC or NDVI and ETa-EC or

ETIa-WPR ranges between 0.82–0.87 at SN-DHR and 0.69–0.86 at

SD-DEM. SD-DEM does overestimate ETIa-WPR when ETa-EC is low

and NDVI is low. These sites are also associated with having high-

quality LST and NDVI layers (the average LST quality for the compari-

son period is equal to or less than 1).

The next best-performing sites, in terms of correlation and R2, are

ES-SCL, ZM-MON and CG-TCH. Excluding CG-TCH, these sites also

have good quality NDVI and LST quality layers. The reasonable per-

formance at the CG-TCH station is because the variation in ETa-EC

and ETIa-WPR is well related to the VPD derived from the EC station

and RET, with R2 = 0.62 and 0.66, respectively. The VPD and RET are

derived from GEOS-5 (VPD and RET) and MSG (RET only), as com-

pared to being derived from satellite images. GEOS-5 and MSG are

available daily and satellite image gaps do not influence the quality of

the VPD and RET quality.

The irrigated agriculture sites, EG-ZAN and EG-SAB, despite high

correlation and R2, are systematically larger than the ETa-EC during
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both high and low ETa-EC, as indicated by the average daily bias

(Table 6). This was less evident at EG-SAA. The seasonal values ETIa-

WPR and ETa-EC for the summer maize 2012 crop at EG-ZAN are

682 and 424 mm, respectively. Compared to ETa from a lysimeter

(ETa-lys), 543 mm, as cited in literature (Atta, Gaafar, Hassan, &

El, 2015), at EG-ZAN for the same crop and period. It, therefore,

F IGURE 7 Time series of
dekad ETIa-WPR (mm/day) (solid
blue line) and dekad ETa-EC
(mm/day) (dashed black line) for
the available periods which varies
for different sites. Note that the
dates are reported in YYYY-MM
format
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suggests that the ETa at the irrigated sites fall somewhere between

the ETa-EC and L1 ETIa-WPR. The overestimation is likely directly

related to the net radiation difference between the EC and WaPOR

datasets as inferred from the RET estimated from the EC data and

compared to the WaPOR RET. The WaPOR RET has a high linear

agreement with the EC RET (R2 = 0.93). However, the bias of WaPOR

RET is consistently 50% greater than the EC RET.

ETIa-WPR and ETa-EC show a weak correlation at NE-WAF

and NE-WAM. The ETIa-WPR begins increasing earlier in the sea-

son, particularly at NE-WAM, and although the ETIa-WPR is cap-

turing the seasonal trend, it is not capturing the magnitude of the

ETa-EC summer values. The difference is likely related to the low-

quality NDVI and LST layers during the summer (average annual

values LST and NDVI gaps appear low in Table 6, however major

gaps are concentrated in the summer season). These sites are not

highly correlated with the site VPD or RET and therefore the lower

quality LST and NDVI is expected to have a great impact on the

quality of ETIa-WPR here. The ETIa-WPR is strongly related to the

SMC at these sites (e.g. R2 = 0.73 at NE-WAM); however, the ETa-

EC shows no relationship with the WaPOR SMC (R2 = 0.37 at NE-

WAM). Both of these sites are dominated by evaporation

(in WaPOR) for most of the year—as indicated by low NDVI

all year.

The ETIa-WPR performance at BN-NAL is not capturing the site

seasonality. BN-NAL ETIa-WPR and ETa-EC show annual values rang-

ing from 1.4–4.5 mm/day to 0.6–6.9 mm/day, respectively. The ETIa-

WPR at BN-NAL does not appear to capture the rainy period in July–

September where the highest gaps in the NDVI exist (low NDVI qual-

ity). At this site, the WaPOR SMC and NDVI layers have a stronger

relationship with the ETa-EC than the ETIa-WPR. For example, the R2

between the WaPOR NDVI and the ETa-EC and the WaPOR NDVI

and the ETIa-WPR are 0.87 and 0.56, respectively. This is, therefore,

pointing to an overestimation of the evaporation component when

NDVI is low and an underestimation of the transpiration component

when the transpiration is high.

The ETIa-WPR has the lowest performance at the GH-ANK and

KWSTI in terms of both the regression and the temporal trends. The

GH-ANK site is characterized by a tropical climate and high vegeta-

tion height (evergreen forest). Further, the ETa-EC is not strongly

related to the VPD or the RET at both GH-ANK and KWSTI. The VPD

at this site ranges from 0.07 to 0.81 with high relative humidity. The

KWSTI site is located in the Rift Valley, between the Aberdares

Ranges to the east and the Mau escarpment to the west. This setting

creates a complex microclimate with significant diurnal variation in

temperature and wind speed, among other meteorological variables.

This site has an inferior NDVI quality layer and a very low correlation

with VPD. As a result, errors in the input meteorological data may

highly influence ETa-EC estimates at the site.

The results show noticeable improvement for all metrics on

average across all sites on a monthly scale (Figure 8 and Table 7).

The overall correlation improved by 0.1, the overall RMSE reduced

by 0.6 mm/day, the bias reduced by 0.2 mm/day, the MAPE reduced

by 14.1% and the R2 increased by 0.06. The correlation improved at

each site and the bias decreased at each site except NE-WAM and

TABLE 6 Statistics comparing dekadal ETIa-WPR with ETa-EC in 14 locations; more information about sites is available in Table 3

Dekad
count

RMSE
(mm/day)

Bias
(mm/day) MAPE (%) R2

r r r
NDVI
QUALa

LST
QUALaETa-EC VPD-EC RET-EC

SA-SKU 63 1.1 0.1 36.3 0.47 0.46 — — 5.5 0.9

SN-DHR 72 0.4 0.0 17.2 0.92 0.96 −0.43 −0.59 2.0 0.9

SD-DEM 33 0.6 0.3 48.4 0.80 0.90 −0.47 −0.70 1.7 0.5

EG-ZAN 95 2.2 1.7 68.9 0.69 0.68 0.43 0.37 1.3 0.2

EG-SAA 108 0.9 0.8 16.5 0.72 0.75 0.39 0.47 1.4 0.3

EG-SAB 104 1.3 1.6 59.9 0.54 0.58 0.46 0.41 1.3 0.3

NE-WAF 49 1.12 −0.5 67.2 0.31 0.56 −0.45 — 7.4 1.3

NE-WAM 118 0.9 −0.2 58.6 0.40 0.63 — — 6.3 1.3

ES-SCL 45 0.9 −0.3 34.0 0.52 0.72 −0.47 — NA NA

GH-ANK 80 1.0 0.6 28.3 0.12 0.34 0.35 −0.36 99.5 18.0

BN-NAL 36 1.8 0.0 44.9 0.27 0.52 −0.22 −0.82 11.3 2.1

CG-TCH 36 0.6 0.2 27.3 0.55 0.74 0.79 0.95 227.0 23.8

ZM-MON 20 0.8 0.2 27.3 0.48 0.69 −0.59 −0.64 7.0 1.0

KWSTI 98 0.8 0.1 37.7 0.26 0.53 −0.15 — 1.5 0.8

Overall 957 1.2 0.5 40.4 0.54 0.71 — — — —

Abbreviations: LST, land surface temperature; MAPE, mean average percent error; NDVI, normalized difference vegetation index; RET, reference evapo-

transpiration; RMSE, root mean square error; VPD, vapour pressure deficit.
aThe NDVI quality layer provides the gap, in days, to the nearest valid observation for that variable. The LST quality layer provides the number of the days

between the date of the data file and the earlier remote sensing observation on which the data is based.
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ZM-MON. The increase at NE-WAM may be a result of missing EC

data during the dry season, creating a bias in favour of the wet sea-

son. The RMSE increased at the Egypt sites and at BN-NAL, likely

due to the strong bias they displayed at a dekadal scale in both wet

and dry seasons in favour of ETIa-WPR which aggregated at a

monthly scale. Other sites showed underestimations in the wet sea-

son and overestimations in the dry season, flattening out bias over

time. The MAPE increased significantly at EG-SAA. EG-SAA followed

the temporal profile more closely and showed the least bias com-

pared to EG-ZAN and EG-SAB. Overall, at a monthly scale ETIa-

WPR is still overestimating ETa-EC at low ETa and at high ETa the

linear regression conforms with the 1:1 line. However, if the Egypt

sites are excluded from the analysis, the ETIa-WPR is overestimating

ETa-EC when ETa-EC is less than 1.6 mm/day and underestimating

ETa-EC when ETa-EC is greater than 1.6 mm/day.

3.3 | Level consistency

The consistency between the ETIa data products for the L1 and L2

data products is high. The ETIa-WPR RMSE, between L1 and L2, for

each dekad for the 2009–2018 period ranged from 0.0 to 0.1 mm/

day, while the correlation ranged from 0.95 to 1.00 with a median of

0.98. The median R2 over the period is 0.96 while the median bias is

7%. The consistency between layers dropped slightly after 2014, coin-

ciding with the introduction of PROBA-V in March 2014. The median

correlation dropped from an approximately perfect positive linear cor-

relation (�1.00) to 0.96, and the median RMSE increase was negligible

(<0.1 mm/day). A slight positive systematic bias, in favour of L2, is evi-

dent after 2014, with median bias increased from 4 to 9%.

The L1 and L3 ETIa-WPR products have a lower consistency as

compared to the L1 and L2 products in the four irrigation areas. The

mean ETIa-WPR values for all dekads in the Zankalon and Awash

schemes are shown in Figure 9. The Awash area has the highest con-

sistency of all scheme areas, reflected in the highest average correla-

tion and R2 across dekads, 0.84 and 0.71 respectively. The ETIa-

WPR RMSE between L1 and L3 in the Awash ranges from

0.42–1.0 mm/day, while the correlation ranges from 0.63 to 0.92.

The median correlation for all dekads in the study period is 0.84, and

the median R2 is 0.84. The RMSE is highest when the ETIa-WPR is

highest. The RMSE temporal trend is in line with the seasonal trend

in the Awash and displays the two seasons associated with the

F IGURE 8 The relationship between monthly mean daily ETIa-
WPR (mm/day) plotted against monthly mean daily ETa-EC (mm/day).
Only months with valid observations for all dekads within that month
are included. The dotted black line represents the linear regression,
and the red line represents the 1:1 line

TABLE 7 Statistics comparing
monthly ETIa-WPR with ETa-EC in 14

locations; more information about sites is
available in Table 3

Month count RMSE (mm/day) Bias (mm/day) MAPE (%) r R2

SA-SKU 22 0.9 0.1 30.4 0.76 0.57

SN-DHR 28 0.3 0.0 13.9 0.98 0.95

SD-DEM 11 0.5 0.3 44.8 0.92 0.85

EG-ZAN 33 2.1 1.7 69.5 0.75 0.57

EG-SAA 36 1.4 0.8 31.7 0.77 0.6

EG-SAB 32 1.7 1.3 45.8 0.76 0.58

NE-WAF 19 1.0 −0.5 59.5 0.73 0.53

NE-WAM 41 0.9 −0.3 54.9 0.70 0.49

ES-SCL 19 0.8 −0.3 36.4 0.77 0.6

GH-ANK 34 0.9 0.6 26.9 0.45 0.2

BN-NAL 12 1.7 0.0 42.9 0.58 0.34

CG-TCH 12 0.6 0.2 25.9 0.76 0.58

ZM-MON 6 0.7 0.1 19.8 0.67 0.45

KWSTI 35 0.7 0.1 31.7 0.54 0.3

Overall 340 0.6 0.4 26.3 0.77 0.59

Abbreviations: LST, land surface temperature; MAPE, mean average percent error; NDVI, normalized difference vegetation index; RMSE, root mean square

error.
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intertropical convergence zone. The correlation is above 0.73 on

95% of dekads, and lowest on dekads when the mean ETIa-WPR is

highest.

The Koga has the lowest consistency of the schemes. Although

the RMSE between L1 and L3 is lower, ranging from 0.3 to 0.7 mm/

day, the median correlation is 0.67, and the median R2 is 0.45.

F IGURE 9 Mean ETIa-WPR per dekad (mm/day) in continental level—L1 (blue line) and irrigation scheme level—L3 (black line) for 2009–2018
period in each of the L3 extents (Table 1) and the continental level—L1 (blue line) and basin and country level—L3 (black line) in the L2 extent.
Note that the date is reported in YYYY-MM

F IGURE 10 Level consistency
validation of ETIa-WPR for three
levels of L1, L2 and L3 ETIa-WPR in
comparison with ETa-EC per dekad
(Dk) for the 2011–2013 period at EG-
ZAN EC station
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Zankalon performed slightly better, with a median correlation of 0.71

and a median R2 of 0.51. The RMSE is higher in Zankalon than the

Koga, but this reflects the higher ETIa-WPR values found in the area.

The ODN had the same RMSE (0.6 mm/day) as Zankalon and the

highest range of RMSE (0.2–1.6 mm/day). The correlation and R2 are

also similar, with median values of 0.73 and 0.53, respectively. All

schemes show similar per cent bias medians (9–12%). The only

scheme that shows a systematic bias is ZAN, where the L1 is consis-

tently higher ETIa-WPR values than L3.

The 10-daily average ETa-EC and ETIa-WPR for all three spatial

resolutions at EG-ZAN are shown in Figure 10. The L1 and L2 ETIa-

WPR show high consistency with each other. The L3 ETIa-WPR is

consistently sitting between the ETa-EC and the L1 and L2 ETIa-

WPR. All levels capture the overall ETa-EC seasonal trends. The L3

data shows a slightly lower R2 (L3 = 0.66 and L1 = 0.69) and correla-

tion (L3 = 0.53 and L1 = 0.68), but a much lower bias (L3 = 1.1 mm/

day and L1 = 1.7 mm/day) and a lower RMSE (L3 = 1.0 mm/day and

L1 = 2.2 mm/day) when compared with ETa-EC. The better R2 and

correlation reflect the L1 and L2 ETIa-WPR ability to capture the tem-

poral fluctuations of ETa-EC better than L3 ETIa-WPR. An example of

this is at dekad 1117, where L1 and L2 ETIa-WPR capture the ETa-EC

dip, whereas L3 ETIa-WPR stays flat. The L3 ETIa-WPR have a better

seasonal agreement with the ETa-lys for the summer maize crop in

2012 (L3 = 487 mm, L1 = 682 mm and ETa-lys = 543 mm).

The NDVI and ETIa-WPR for the 250 m buffer are shown in

Figure 11 for the three spatial resolutions. The 30 m level is picking

up more spatial variation (standard deviations: L3 = 0.05, L2 = 0.02;

L1 = 0.02) at the site and has a lower mean NDVI for the site as com-

pared to L2 and L1 (mean: L3 = 0.74; L2 = 0.82 and L1 = 0.83). This

reflects the lower ETIa value for this dekad, which is more similar to

the ETIa-EC (Figure 10) and shows some limitations in comparing L1

data to EC in a heterogeneous landscape.

4 | DISCUSSION

4.1 | Product accuracy

The ETIa-WPR results are comparable the improved MODIS global

terrestrial ETa algorithm, MAPE of 24.6% as compared to EC mea-

surement, when driven by the tower meteorological data

(Mu et al., 2011). The ETIa-WPR error estimates, on average, are also

close the average errors in EC measurements as EC measurements

typically have errors of 20–30% (Allen et al., 2011; Blatchford,

F IGURE 11 NDVI and ETIa-WPR for the EG-ZAN site for all three spatial resolutions (L3 = 30 m, L2 = 100 m and L1 = 250 m) on dekad
1222 (first dekad of August 2012). The point is the station location; the circle is the buffer used for data extraction to compare to the ETa-EC.
NDVI, normalized difference vegetation index
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Mannaerts, Zeng, Nouri, & Karimi, 2019), however, it appears that the

ETIa-WPR is regularly overestimating ETIa, which is evident at local to

basin level. Figure 12 shows the bias and number of observations

between ETIa-WPR and ETa-EC for all EC observations disaggregated

based on 0.5 mm/day ETa-EC increments. The results are further

defined based on non-irrigated sites, irrigated agriculture and all sta-

tions. For non-irrigated sites, there is a positive bias (ETIa-

WPR > ETa-EC) when the ETa-EC is less than 2.5 mm/day and

becomes negative when the ETa-EC is greater than or equal to

2.5 mm/day (this reduced to 1.6 mm/day at a monthly scale). This bias

increases, both positive and negative, as the ETa-EC deviates from

2.5 mm/day. The underestimation is further exacerbated by the fact

that ETa-EC estimations can lead to underestimation of the latent

energy or ETa-EC by 20% (Glenn et al., 2007; Wilson et al., 2002).

Underestimation bias is larger than overestimation bias and increases

with increasing ETIa-WPR. However, Africa as a continent is dry with

long-term (2010–2015) average daily ETIa-WPR for the continent

being 1.5 mm/day. Therefore, the ETIa-WPR frequently overesti-

mates at the annual, basin scale. The irrigated sites (EG-SAA, EG-SAB

and EG-ZAN) are overestimated for nearly all ETa-EC. The irrigated

sites strongly influenced the overall bias, as these sites have many

observation points. When irrigated and non-irrigated results are com-

bined, the changing point where ETIa-WPR is greater than ETa-EC

occurs when ETa-EC exceeds 3.5 mm/day.

4.1.1 | Why is WaPOR overestimating when ETIa
is low?

ETIa-WPR is overestimating ETa in dry, hot, water-stressed conditions

(e.g. water-limited). The ETIa-WPR estimates for prolonged dry

weather and the dry seasons of WaPOR are usually higher than the

observed values (flux towers, field). These overestimations are small in

terms of absolute values (mm/day) but can lead to overestimation of

results in higher annual ETIa-WPR when compared to water mass bal-

ance checks of river basins. The overestimation in dry regions is likely

to be primarily due to the functioning of the SMC constraint or the

too high SMC in dry regions.

The WaPOR SMC is considered, on average, high in arid regions

(e.g. Figure 6) and therefore, ETIa-WPR is likely not effectively

accounting for soil moisture limitations. The high SMC is resulting in

an overestimation of the evaporation component in particular, as

NDVI is low and therefore the region is dominated by the evaporation

component of ETIa-WPR. Arid regions should be largely regulated by

water availability rather than energy. Conversely, under well-water

conditions, the Penman–Monteith method is primarily driven by Rn

(e.g. energy limited) (Rana & Katerji, 1998). As Penman–Monteith is a

linearized approximate solution, problems may occur in extreme con-

ditions and errors in the soil evaporative term (Leca, Parisi, Lacointe, &

Saudreau, 2011). Majozi et al. (2017b) noted that Penman–Monteith

methods need to include a SMC constraint. Though the ETIa-WPR

methodology does include a SMC constraint, overestimations in SMC

are reducing its functionality. The SMC is estimated using the trape-

zoidal method (function of NDVI and LST). Where the NDVI is low,

the LST component could be the primary contributing factor to SMC

errors.

For water-stressed crops, crop resistance errors can attribute to

the large error in ETa estimations, while for tall crops, the VPD can

have a large influence on the error (Rana & Katerji, 1998). Extreme

conditions include when aerodynamic resistance is high, >50 m/s

(Paw, 1992). High aerodynamic resistance can occur in sparse vegeta-

tion, when surface temperature is much greater than air temperature

(e.g. water-stressed conditions) and when wind speed is very low

(Dhungel, Allen, Trezza, & Robison, 2014; Paw, 1992). Cleverly

et al. (2013) and Steduto, Todorovic, Caliandro, and Rubino (2003)

found when the standard aerodynamic resistance values were used

the Penman–Monteith method over- and underestimated RET when

RET is low and high respectively and suggested the aerodynamic

F IGURE 12 Upper—number
of observations for a given ETa-
EC range. Lower—bias of dekadal
ETIa-WPR (mm/day), as
compared to ETa-EC, plotted
against the increasing ranges of
ETa-EC (mm/day) for
observations at natural vegetation
sites (orange bar), irrigated

agriculture sites (blue bar) and all
sites (grey bar). Note that the
ETa-EC in non-irrigated sites was
only greater than 5.5 mm/day for
three observations, they are not
included in the bias calculations
shown in the figure as it is not
considered a representative
sample size
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resistance should vary with climatic variables as it is responsive to rel-

ative humidity gradients.

It is recommended to further verify the behaviour of the SMC.

The SMC relative moisture index is derived from LST and vegetation

cover (NDVI) data. Therefore, verification against highest available

physically based satellite soil moisture data (e.g. active microwave

sensors on-board Sentinel-1A, Metop) is advised. It may be helpful to

use SMC for transpiration and passive microwave sensors for

evaporation.

The main source of error in the ET-WB method is the uncertainty

in PCP. Studies on the CHIRPS PCP product shows high correlations,

at monthly and regional scales, in Eastern Africa (r = 0.7–0.93) (Dinku

et al., 2018; Gebrechorkos, Hülsmann, & Bernhofer, 2018) and Bur-

kino Faso (r = 0.95) (Dembélé & Zwart, 2016) with little to no bias.

Muthoni et al. (2019) reported that CHIRPS v2 slightly overestimated

low-intensity rainfall below 100 mm and slightly underestimated high-

intensity rainfall above 100 mm compared in Eastern and Southern

Africa. On an annual, basin-scale, the CHIRPS PCP product does not

show significant bias, except for in largely ungauged tropical basins

(e.g. Congo) (Liu et al., 2016).

The Q component is less than 25% of the PCP in all but three

basins used in the comparison, Central West Coast, West Coast and

North East Coast (though in the North East Coast ETIa-WPR > PCP).

In basins where Q is a significant component of the water balance, its

uncertainty is going to have the largest influence on the uncertainty

of the ETa-WB. The R2 values of modelled GRDC Qmean against

streamflow data were > 0.9 (Beck et al., 2015). Therefore, the Qmean

is expected to be high in gauged basins. Unguaged basins, in the anal-

ysis, have higher uncertainty and introduce higher uncertainty into

ETa-WB. Basins with no streamflow data include North Interior,

North East Coast, Shebeli & Juba Basin and Limpopo. Of these basins

only the North Interior has ETIa-WPR < PCP. If basins are removed

from the analysis with missing streamflow data the regression

between ETIa-WPR and ETa-WB only marginally improves (R2 = 0.96

compared to R2 = 0.94), suggesting the quality of Qmean is appropri-

ate for the water balance check. Therefore, the large overestimations

of ETIa-WPR should not be attributed to the simplified water balance

approach.

Wetland and irrigated areas are expected to have ETIa greater

than PCP. Wetland and irrigated areas represent 1% and < 2%,

respectively of land cover in Africa and is suggested to have little

impact on the overall water balance for most basins. The basins with

the greatest irrigated land cover and the highest fraction of ETIa-WPR

from irrigation, are Limpopo Basin (6.4% of land cover), Orange Basin

(4.3% of land cover) and Indian Ocean Coast (6.7% of land cover).

ETIa-WPR in these basins contribute to 6.0, 7.6 and 8.7% of the total

evapotranspiration. For each of these basins, ETIa-WPR is greater

than PCP by more than the fraction of ETIa-WPR from irrigation.

Basins with large wetlands and high ground water availability include

the Niger (Niger Delta), the Nile (the Nile Delta and Sudd wetland),

the South Interior (Okavango Delta) (FAO and IHE Delft, 2019). How-

ever, large areas of shrubland and deciduous tree cover also have ETIa

greater than PCP, when compared with the WaPOR land cover

dataset (available on the WaPOR portal). The overestimation of ETIa

compared to PCP on an annual basin appears to be more closely

related to climate. Climate zones BSh, BWh, CWa and Aw have large

areas with ETIa greater than or approximately equal to PCP at an

annual scale. These zones are largely associated with basins with ETIa

greater PCP.

4.1.2 | Why is WaPOR overestimating ETIa in
irrigated fields?

ETIa-WPR is overestimating ETa dry, hot, non-water-stressed condi-

tions (e.g. irrigated fields). These errors might lie in the FAO-Penman–

Monteith method's and may be associated with local advection

effects. Local advection may increase ETa over a water-limited field

by up to 30% (De Bruin, Trigo, Bosveld, & Meirink, 2016; Trigo

et al., 2018). There is an underlying assumption of no advection in the

RET definition for a reference grass field (Allen et al., 1998). However,

in small fields, under arid conditions with high temperatures, local

advection effects may occur when warm, dry air formed over an

upwind, adjacent field is advected horizontally over the well-watered

fields (De Bruin & Trigo, 2019). This horizontal advection of sensible

heat increases the ETa of water from well-watered areas, where SMC

is high and not limiting, but will result in the overestimation of ETa in

water-limited fields or areas. While the Egypt fields are well irrigated

(Sugita et al., 2017) with SMC ranging from 0.6 to 1 throughout the

irrigation season, surrounding fields are not, and frequently have low

SMC or water limiting condition, which can potentially drive up the

ETIa-WPR estimates. The Zankalon irrigated area, where EG-ZAN is

located, has small fields, �0.2 ha (Table 4), as does the EG-SAA and

EG-SAB. Therefore, these sites may be particularly influenced by this

effect as 0.2 ha is 3% of an L1—250 m pixel, 20% of an L2—100 m

pixel and 200% of an L3—30 m pixel (e.g. see Figure 10).

4.1.3 | Why is WaPOR misrepresenting ETIa when
ETIa is high in humid conditions?

ETIa-WPR is not representing ETa well in water unlimited conditions

with high humidity. The Penman–Monteith method is not suitable for

very low VPD (or high humidity) (Paw & Gao, 1988). Further, for tall

crops, the VPD can have a considerable influence on the error

(Rana & Katerji, 1998). It is not suitable in these conditions because of

the linear assumption of saturated vapour pressure and air tempera-

ture. Paw (1992) advised that the use of non-linear equations should

be used in extreme conditions to maintain errors of less than 10–15%.

Quality of input data is likely affecting the quality of the ETIa-

WPR in these regions. Low-quality data or missing RH data means

VPD is calculated from Tmin. In humid climates condensation occurs

during the night, which leads to an overestimation of VPD (Allen

et al., 1998), which is found when Penman–Monteith is applied
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without RH data in humid regions of Ecuador (Córdova, Carrillo-Rojas,

Crespo, Wilcox, & Célleri, 2015). In water unlimited regions, the over-

estimation of VPD can lead to higher ETa, as it is easier for the flux to

occur when there is less moisture in the air. Further, these regions fre-

quently contain low-quality NDVI and LST layers in these regions.

This is resulting for example, in overestimation of radiation at GH-

ANK skewing results at this location. The NDVI and LST quality layers

are therefore a good indicator of the quality of the ETIa in these

regions.

4.2 | Product consistency

There is very high consistency between L1 and L2 products. The high

consistency is partly explained by the use of a downscaled MODIS

product before the introduction of PROBA-V in 2014 and the SMC

component, which is based on MODIS for both L1 and L2 for the

entire database period. The high consistency suggests that at a given

scale, for example basin scale, the 100 m product provides no addi-

tional value to the 250 m resolution. However, at higher resolution

applications, the product does show spatial variation not captured by

the L1 product (e.g. Figure 11) and may provide better insight into

intra- and inter-field level variations.

The consistency between the L1 and L3 products is mixed. The

Awash and ODN L3 areas show high consistency between L1 and L3.

In the Koga, there is a strong positive bias for L1 ETIa-WPR, while the

agreement between L1 and L3 in the Koga and in Zankalon is lower.

These errors are likely largely attributed to the different input temporal

and spatial resolutions available from the satellite platform combined

with high spatial and temporal heterogeneity in the area (e.g. Koga and

Zankalon have much smaller irrigated fields and higher crop diversity

than the Awash and ODN–see Table 4). All levels have a dekadal time-

step. However, the satellite revisit period varies, having revisits of

1-day, 2-days and 16 days for MODIS (L1), PROBA-V (L2) and Landsat

(L3), respectively, with daily meteorological data input. The variation in

the revisit period can lead to differences when interpolating images to

a dekadal timescale, particularly in rainy periods and during the growing

season (Gao, Masek, Schwaller, & Hall, 2006). Uncertainty of up to 40%

has attributed to the difference in a 16-day revisit as compared to

4-day revisit, depending on climate and season (Guillevic et al., 2019),

though this was without daily meteorological data as a tool for interpo-

lation. Conversely, the L3 dataset can capture more spatial variability

for a given image as compared to the L1 and L2 data, which is highly

important when using non-linear models. Therefore, the L3 dataset is

expected to perform better in areas of higher spatial heterogeneity

(Sharma, Kilic, & Irmak, 2016).

5 | CONCLUSIONS

The WaPOR products for Africa and the Middle East provide the

highest resolution continuous near real-time products available so far

to monitor ETIa. Current validation efforts need to be continued and

intensified to confirm the suitability of these products for various

uses. However, significant issues with the sparseness of available

ground-truth measurements make direct validation to in situ, insuffi-

cient as a sole means to validate the ETIa product over continental

Africa. To compensate for insufficient ground-truth locations, we

added physical consistency and level consistency checks as part of

the validation analyses.

The ETIa-WPR product is responsive to general trends in the

magnitude of ETIa for most climates and shows good correlations at

both local (EC) and basin (WB) scales. In dry irrigated areas, WaPOR

appears to be overestimating ETIa, particularly the coarse resolution.

The overall ETIa-WPR MAPE of 26.3% on a monthly, point scale,

40.4% on a daily, point scale and 29.5% on an annual, basin scale.

These are promising results considering that WaPOR presents a conti-

nental almost near real-time open-access dataset. Analysis of the

intermediate data components provide insights into some of the pos-

sible causes of the over- and underestimation of ETI-WPR, which

appear to be primarily driven by an overestimation of the SMC which

is driving overestimation of evaporation. Users should also be cau-

tious in applying the dataset in very hot, arid conditions, in high can-

opy (e.g. forests) and areas with large gaps in the NDVI- and LST

quality layers. Further validation activities are suggested as new

ground-data become available, particularly in cropped and irrigated

areas.
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