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A B S T R A C T   

Globally, the agricultural sector is the largest consumer of fresh water, despite the increased efficiency in irri-
gation. Remote sensing is a valuable tool to monitor agricultural water use. In this study, we demonstrate a novel 
algorithm that computes high-resolution (10 m) remote sensing-based evapotranspiration (ET) data linked 
exclusively to irrigation, i.e. the incremental evapotranspiration (ETincr). The methodology compares the ET of 
irrigated agricultural pixels to the weighted average ET of a subset of natural Hydrological Similar Pixels (HSP). 
The hydrological similarity is based upon a set of features derived from DEM, soil texture, reference evapo-
transpiration, and precipitation datasets. The difference in ET between the subset of hydrological similar natural 
pixels and the corresponding irrigated agricultural pixel is explanatory for the amount of ET related to irrigation 
(ETincr). These results are then converted to the water use (m3) per agricultural field. The method is validated for 
three study areas in South Africa, Spain, and Australia. Comparing the monthly and seasonal water use estimates 
to water meter observations in the Hex Valley (South Africa), yielded an R2 of 0.751 and 0.780, respectively. For 
the Ebro (Spain) and Namoi (Australia) study areas, the accuracy of the monthly estimates decreased. In 
Australia, this was a result of the water meters being linked to local reservoirs, instead of the direct use of the 
irrigation systems. In total, 8 out of the 27 validation fields with monthly data showed a Kling-Gupta Efficiency 
(KGE) larger than 0.5, which highlights that the temporal variability can be captured well by the model. 
Generally, seasonal estimates showed to be most accurate, which makes the product suitable for comparison with 
seasonal water allocations and could help to monitor overconsumption in water-scarce environments.   

1. Introduction 

Water is a scarce resource and its limited availability is recognized as 
one of the major threats in the coming decades (World Economic Forum, 
2021). Due to climate change, agricultural droughts have increased 
significantly over the last decades (IPCC, 2021). With agriculture being 
by far the largest consumer of fresh water, the presence and reinforce-
ment of regulations that prevent individual farmers from overconsuming 
in water-scarce environments should be a priority for any water man-
agement agency (FAO, 2011). However, there is limited control on 
ground and surface water abstractions worldwide (Foster et al., 2020), 
and most of the irrigation practices are far from efficient (Jägermeyr 
et al., 2015). Although advances have been made to improve irrigation 
efficiency (Koech and Langat, 2018), some argue that this does not 
necessarily reduce the consumptive water use in the agricultural sector 

(Linstead, 2018; Perry, 2017). Having a tool that remotely monitors the 
water use of irrigated cropland could help enforce local regulations, 
increase (environmental) water availability, gain insight on agricultural 
water use, and prevent conflicts over resources. 

The potential of using satellite data for the agricultural sector is 
widely acknowledged (Sishodia et al., 2020). Although estimating the 
water use of irrigated cropland based on satellite data is challenging, 
multiple studies have been conducted on this topic. Some are primarily 
based on soil moisture (Brocca et al., 2018; Dari et al., 2020; Jalilvand 
et al., 2019; Zappa et al., 2021; Zaussinger et al., 2019), and others focus 
on evapotranspiration estimates (Bretreger et al., 2020; Koch et al., 
2020; Romaguera et al., 2012; Tazekrit et al., 2018; Van Eekelen et al., 
2015). For these two approaches, different satellite observations are 
needed. Surface soil moisture is best monitored with low resolution 
(10–50 km) microwave sensors, such as SMAP, SMOS, and ASCAT (Peng 
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et al., 2021). However, Zappa et al. (2021) demonstrated that an 
upscaled (500 m) Sentinel-1 based soil moisture product could be used 
to estimate irrigation amounts accurately. Remote sensing based 
evapotranspiration models often combine thermal infrared and/or op-
tical multispectral satellite data with meteorological datasets. Evapo-
transpiration models which require thermal infrared data often have a 
lower spatial resolution (1 – 10 km) (Koch et al., 2020; Van Eekelen 
et al., 2015) than models that base their estimates on crop coefficients 
(Kc) and the reference evapotranspiration (10 – 30 m) (Bretreger et al., 
2020; Tazekrit et al., 2018). The mentioned remote sensing based irri-
gation quantification studies show the potential of using satellite data 
for water use monitoring. Nevertheless, for modeling the water use of 
individual fields, they generally lack spatial resolution (Lesiv et al., 
2019). Only the studies of Bretreger et al. (2020) and Tazekrit et al. 
(2018) used evapotranspiration models of sufficient resolution. How-
ever, the accuracy of such crop coefficient and reference evapotranspi-
ration based models is often region-dependent and the product is, 
therefore, less scalable than most other energy balance models 
(Blatchford et al., 2020). Also, the estimated Kc-based evapotranspira-
tion mimics the evapotranspiration under well-watered conditions, 
which rarely occur in semi-arid climates, resulting in an overestimation 
of the actual evapotranspiration (Jovanovic and Israel, 2012; Thoreson 
et al., 2009). Therefore, more sophisticated energy balance models 
would be preferred as input for water use estimated models. 

Several remote sensing based energy balance models have been 
developed in the last decades (Zhang et al., 2016). When estimating the 
evapotranspiration using energy balance models, acquiring land surface 
temperature (LST) data is often a limiting factor, with only a few plat-
forms providing LST observations with a moderate temporal (< 16 days) 
and spatial resolution (0.1–1 km) (Zhu et al., 2018). ETLook, the suc-
cessor of SEBAL, is one of the models that use the Penman-Monteith 
equation to estimate the actual evapotranspiration. The model parti-
tions the energy available for evaporation (E) and transpiration (T) 
based on the leaf area index (LAI) and is easily scalable from field to 
continental extents. In addition, the E and T can be calculated separately 
in data-scare environments, such as areas with persistent cloud cover. 
Because the model uses upscaled LST data in combination with high 
resolution optical satellite data, the resolution of the outputs can be as 
high as 10 m (Bastiaanssen et al., 2012). This, in combination with the 
daily temporal resolution, makes the model suitable as an input for 
generating water use estimates at field level. 

ET data alone, however, does not differentiate between irrigated and 
rainfed ET. This partition was the subject of the research of Van Eekelen 
et al. (2015). In their study, SEBAL (Bastiaanssen et al., 1998) was used 
to calculate actual evapotranspiration, which was then compared to the 
ratio between the accumulated evapotranspiration (E) and precipitation 
(P) for land classes with similar natural conditions. From the E/P ratio, 
the evapotranspiration originating from precipitation (Ep) was calcu-
lated and subtracted from the actual evapotranspiration, to calculate the 
incremental ET. The incremental ET was then used to estimate the water 
use. Although the potential of ET-based irrigation quantification was 
presented, the researchers also experienced some limitations. Acquiring 
high-resolution precipitation data, for example, is challenging in most 
regions of the world. In their study, the highest resolution precipitation 
data had a spatial resolution of 0.1◦, which compromised the spatial 
accuracy of the water use estimates. Another limitation was that the 
similarity between pixels was purely based on a land-use classification, 
which generally had an overall accuracy of 85%. Finally, they concluded 
that ETp is also impacted by differences in soil type, temporal rainfall 
distributions, and surface runoff, among others, which were not taken 
into account at the time. 

In this study, we aim to bypass many of the limitations that Van 
Eekelen et al. (2015) have experienced so we can estimate the water use 
at field level using remote sensing data. The proposed method uses 
ETLook to calculate high resolution (10 m) evapotranspiration estimates 
and the novel Hydrological Similar Pixels (HSP) algorithm to partition 

between irrigated and natural evapotranspiration. The latter is done by 
comparing the evapotranspiration of irrigated areas to that of natural 
pixels that are most similar in hydrogeomorphological conditions and 
requires satellite-based evapotranspiration data, weather observations, 
and static environmental datasets. The outcomes are validated for three 
study areas in South Africa, Spain, and Australia using in-situ water 
meter observations. 

2. Materials and methods 

2.1. Water balance 

The objective of hydrological dilemmas is often the same: to close the 
water balance. The water balance is described in Eq. (1), where P rep-
resents the precipitation, R the streamflow, ET the evapotranspiration, 
and ΔS the change in storage, either in the soil, bedrock, or 
groundwater. 

P = R+ET +ΔS (1) 

In stable systems, ΔS is considered 0, so the equation solely relies on 
the precipitation, evapotranspiration, and streamflow. However, in 
many regions, the streamflow is unknown, precipitation data unreliable, 
and the change in storage is not neglectable, resulting in difficulties 
when trying to close this equation. 

The approach of this research is to use ET data to quantify irrigation 
water use and mimic conditions where all the other terms of the water 
balance can be neglected. This is done by comparing the ET of irrigated 
crops to the ET of non-irrigated natural vegetation. The assumption here 
is that for areas with similar hydrogeomorphological conditions, the 
difference in ET is solely a result of irrigation efforts (Eq. (2)). This 
difference in ET between natural (ETnat) and irrigated vegetation (ETirr) 
is called incremental evapotranspiration (ETincr). 

ETincr = ETirr − ETnat (2)  

2.2. Irrigation Quantification Method 

The proposed irrigation quantification method is divided into three 
parts, i.e. data collection and (pre)processing, algorithm processing, and 
irrigation quantification, which are described in Fig. 1. The inputs are 
either of periodic or static nature. Periodic inputs originate from 
weather stations and satellites, while static inputs come from digital 
elevation model (DEM), soil texture, and land cover classification 
datasets. Based on these inputs, two core algorithms are used. ETLook, 
developed by Bastiaanssen et al. (2012), is responsible for producing 
actual (ETact) and reference evapotranspiration (ETref) data, which 
together with precipitation data and the static datasets are fed into the 
Hydrological Similar Pixels (HSP) algorithm. The ETLook model esti-
mates the key hydro-meteorological parameters of the 
Penman-Monteith equation empirically, based on minimal field and 
remote sensing data, without the need for numerical simulation 
methods. This approach leads to adequate quantification of the evapo-
transpiration (Blatchford et al., 2020). Analogous to the study of Van 
Eekelen et al. (2015), the base of the HSP algorithm is a high-resolution 
land cover map that distinguished irrigated agriculture from natural 
vegetation. The HSP algorithm aims to identify for each irrigated agri-
cultural pixel, a subset of natural pixels that are similar to the irrigated 
agricultural pixel in terms of precipitation, reference evapotranspira-
tion, topography, and soil texture. The addition of these static and pe-
riodic datasets is an improvement upon the approach of Van Eekelen 
et al. (2015), where only evapotranspiration data, precipitation data, 
and a land cover map were used to calculate the irrigated water use. The 
output of the HSP algorithm is the incremental evapotranspiration 
(ETincr), which describes the amount of water that is evaporated purely 
due to irrigation. This value is finally converted to the water use (m3) 
based on the surface area of a specific field or cluster of fields. 
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2.2.1. Data collection and processing 
The multispectral data used for this research is captured by the 

Multispectral Imager (MSI) and OLI (Operational Land Imager) sensors, 
carried by the satellites Sentinel-2A and 2B (ESA, 2012), and Landsat 8 
(U.S. Geological Survey, 2015), respectively. The first sensor provides 
10 m spatial resolution data every 5 days, while the latter has a 30 m 
resolution and 16 days overpass frequency. Level 1 C reflectance prod-
ucts were (i) downloaded, (ii) atmospherically corrected (Rahman and 
Dedieu, 1994), (iii) adjusted according to a surface bidirectional 
reflectance distribution function (BRDF) (Roy et al., 2006), (iv) topo-
graphically normalized (Richter et al., 2009), and (v) cloud masked by 
an external company, using a deep-learning model and manual accuracy 
check (www.cloudisnoise.com). The corrected reflectances were 
employed to calculate the normalized difference vegetation index 
(NDVI) and the albedo, which are inputs for the ETLook model. 

As thermal data, the brightness temperature from Visible Infrared 
Imager and Radiometer Suite (VIIRS) onboard of SUOMI NPP (Roger 
et al., 2017) was employed. For this wavelength, the images have a 
375 m resolution and are provided daily. To estimate the weekly land 
surface temperature (LST), the least clouded image per week was used. 
To better capture the variability within the images, a lookup table be-
tween high and low-resolution albedo and NDVI was built and 

extrapolated to upscale the LST data. 
The meteorological information required for the processing comes 

from the most recent validated Atmospheric General Circulation Model 
from the Earth model and data assimilation system Goddard Earth 
Observing System (GEOS) of the National Aeronautics and Space 
Administration (NASA) (Rienecker et al., 2008). When available, data 
from local meteorological stations was also collected. That was the case 
for some meteorological variables in Australia, which were available via 
the Bureau of Meteorology (www.bom.gov.au), and the weather ser-
vices of Hortec (www.hortec.co.za), for the Western Cape, South Africa. 
The transmissivity was computed from the incoming shortwave radia-
tion products distributed by the geostationary satellites MSG (ESA, 
1999) and Himawari (Japan Meteorological Agency, 2015). Tempera-
ture and humidity variables from GEOS were disaggregated according to 
Rouf et al. (2020), while station data was spatially interpolated 
following the work of Hengl (2007). 

The static inputs dictate most of the similarity between natural and 
irrigated pixels. To be able to exploit the algorithm on a global level, 
only globally available datasets were considered. An overview of them is 
given in Fig. 2. 

The first set of static features used in the HSP algorithm are features 
derived from a digital elevation model (DEM) since it is acknowledged 

Fig. 1. Flowchart of the irrigation quantification method. As periodic inputs for the ETLook model, thermal and multispectral satellite data and weather observations 
are used. The HSP method relies, besides periodic precipitation (P), reference evapotranspiration (ETref), and actual evapotranspiration (ETact) data, also upon static 
inputs like a high-resolution land cover map to classify natural and irrigated areas, a digital elevation model (DEM) to derive the slope, aspect, and Topographic 
Wetness Index (TWI), and soil information to derive the percentages clay, silt, and sand in the area. By using ETLook and the HSP algorithm we can derive the 
incremental evapotranspiration (ETincr), which can be converted to the water use (m3) per field. 

J. Brombacher et al.                                                                                                                                                                                                                            



Agricultural Water Management 267 (2022) 107602

4

that topography, in general, can be an excellent indicator for hydro-
geomorphological differences (Noh et al., 2015). The DEM used for this 
research is provided by the Shuttle Radar Topography Mission (STRM) 
dataset, which covers 80% of the world’s landmass at 30 m resolution 
(Hennig et al., 2007). The DEM-based static features are the slope, 
aspect, and Topographic Wetness Index (TWI). The aspect is converted 
from a 360◦ to a north-south (180◦) orientation since the east and west 
orientation does not usually explain the difference in available solar 
radiation. The TWI is often used as an index to account for differences in 
hydrological processes due to topography (Sørensen et al., 2006), and 
was first derived by Beven and Kirkby (1979). The TWI is calculated 
using the SAGA-GIS flow accumulation module (Conrad et al., 2015). 
The TWI typically ranges between –3 and 30, with low values indicating 
dry and high values indicating wet conditions. 

The second set of static features is related to the soil type. The soil 
type is chosen due to its effect on the storage of nutrients, infiltration 
capacity, rooting depth, capillary rise, field capacity, and wilting point, 
to name a few (Moene and Dam, 2014). The ISRIC SoilGrids database 
provides global pH, bulk density, coarse fragments content, sand con-
tent, silt content, clay content, cation exchange capacity (CEC), total 
nitrogen, as well as soil organic carbon density, content, and stock, at 
250 m resolution (Hengl et al., 2017). For this research, the clay, silt, 
and sand content were considered. 

The choice of the land cover map depends on the study area, but 
generally, the highest resolution and the most up-to-date public datasets 
are chosen. The minimum requirements for a land cover map are the 
spatial resolution (< 30 m) and the presence of the classes: (i) rain-fed 
and (ii) irrigated agriculture, (iii) built-up areas, (iv) open water 
bodies, (v) natural and (vi) forest areas. For the HSP algorithm, the 
forest areas should not be included as comparable natural areas. Trees 
are generally more resilient to drought and have better access to water 

than crops. As a result, they tend to show higher evapotranspiration 
rates than crops during water-stressed conditions, causing under-
estimated or even negative ETincr values. For South Africa we used the 
South African National Land-Cover (SANLC) 2018 dataset (Thompson, 
2019), for Spain the Sistema de Información sobre Ocupación del Suelo 
de España (SIOSE) dataset (SIOSE, 2018), and for Australia the New 
South Wales Landuse 2017 v1.2 dataset (DPIE, 2020). 

2.2.2. Algorithm processing 
The ETLook algorithm requires, besides meteorological data, satel-

lite data on NDVI, surface albedo, and soil moisture. The soil moisture is 
derived using land surface temperature (LST) and NDVI data according 
to the methodology described by Yang et al. (2015), which uses a 
trapezoid approach on a pixel-by-pixel basis. A thorough validation of 
the ETLook algorithm for multiple use cases (field level, regional level, 
and continental level) is done by Blatchford et al. (2020). 

The HSP model aims to find, for each irrigated agricultural pixel, a 
subset of hydrological similar natural pixels. This similarity is expressed 
as the difference per static input between the natural and agricultural 
pixels compared to its standard deviation over the entire study area (Eq. 
(3)). For example, in a mountainous area, the standard deviation of the 
slope is high, so pixels are considered to be similar earlier compared to 
pixels in a flat area. This choice is made to enable flexibility in the 
definition of similar pixels, but also to make sure that in every envi-
ronment similar pixels can be found. The similarity score of every static 
input is then averaged to compute the general similarity (Eq. (4)). 

sfeat = 1 −
abs(irrfeat − natfeat)

σfeat
(3)  

Fig. 2. An overview of the static features used for the Hydrological Similar Pixels (HSP) algorithm, consisting of the slope, aspect, and Topographic Wetness Index 
(TWI), derived from the Shuttle Radar Topography Mission (SRTM) DEM; clay, silt, and sand percentages derived from the ISRIC SoilGrids database (Hengl et al., 
2017); and the land cover classification, whose source depends on the study area. These examples are illustrating the static features of the area surrounding Narrabri, 
New South Wales, Australia. 
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s =
sslope + saspect + sTWI + sclay + ssilt + ssand

Nfeat
(4) 

Here, sfeat represents the score per static feature, namely slope, 
aspect, TWI, clay, silt, and sand contents. irrfeat is the feature value of the 
irrigated pixel; natfeat the value of the natural pixel; σfeat the standard 
deviation calculated for the entire scene; s the overall score of all static 
inputs. 

A natural pixel is considered similar if the score is larger than the 
threshold (thr) parameter, which is expressed as: 

thr = − thrstd + 1 (5) 

In which thrstd expresses the number of standard deviations the score 
is allowed to deviate from to be considered similar. If this similarity is 
above a predefined threshold, the natural pixel will be added to the 
subset of similar pixels (Eq. (6)). 

similar =
{

s ≤ thr : False
s > thr : True

}

(6) 

Not all static inputs are prepared in the same manner before calcu-
lating the similarity. The aspect is only an important feature when there 
is a significant slope, as in (relatively) flat regions, the difference in solar 
radiation caused by the aspect is negligible. Therefore, for irrigated 
agricultural pixels with a slope smaller than 2◦, the aspect is considered 
not of interest. This is reflected by indicating the allowed aspect error to 
be 180◦, meaning that even if the aspect difference between the natural 
and irrigated pixels is 180◦, the aspect of those pixels is still considered 
similar. For irrigated agricultural pixels with a slope larger than 2◦, an 
exponential function is used to decrease the allowed aspect error when 
the slope increases. Both scenarios are described by Eqs. (7) and (8). 

easpect =

{
irrslope < 2 : 180
irrslope ≥ 2 : 180e− 0.115(irrslope − 2)

}

(7)  

saspect = 1 −
abs(irraspect − nataspect)

easpect
(8) 

In addition to the scores of each static input, for each natural pixel 
that passes the similarity criteria, the Total Available Water (TAW) is 
calculated. TAW reflects the impact of the soil type on the water holding 
capacity of the soil, which depends on the field capacity, permanent 
wilting point, and rooting depth (Mohamed and Ali, 2006). Since the 
rooting depth is unknown, this parameter has a constant value and is 
expressed as a ratio of the rooting depth of natural vegetation compared 
to that of crops. Generally, for irrigated crops, this value is set to 1 and 
for natural crops this value is set to 1.5, meaning that natural vegetation 
root 1.5 times deeper than crops, mainly due to natural vegetation being 
better suited for dry conditions. These values are chosen after calibra-
tion of the HSP algorithm using in-situ water meter observations. 
Effectively, the TAW scales the ETact of natural vegetation to be more 
comparable to the ETact of irrigated agricultural vegetation. For the 
calculation of the TAW, pedotransfer functions derived by Mohamed 
and Ali (2006) are used, which calculate the field capacity (qFC) and 
permanent wilting point (qPWP) using sand, silt, and clay fractions. 
Coupled with the rooting depth (zroot), the TAW is calculated according 
to Eq. (9). 

TAW = 1000(qFC − qPWP)zroot (9) 

The TAW is calculated for both the irrigated agricultural and the 
natural pixels that meet the similarity criteria. By dividing the TAW of 
the natural pixel (TAWnat) with the TAW of the irrigated agricultural 
pixel (TAWirr), the TAWratio is calculated. This ratio is used to scale the 
ETact of the natural pixels to match the ETact of the irrigated agricultural 
pixel, as shown in Eqs. (10) and (11). 

TAWratio = TAWnat/TAWirr (10)  

ETactnat,adj = ETactnat
/
TAWratio (11) 

As an additional criterion for natural pixels to be considered similar 
to the irrigated agricultural pixel, the scores of the reference evapo-
transpiration (ETref) and precipitation (P) are calculated. These are 
calculated in the same way as expressed in Eq. (3). The score of the ETref 
and P are then combined to a single feature by calculating the mean 
score of the two. This step is done separately from the static input 
because pixels might be completely similar in a geomorphological 
manner, but experience different conditions due to local rainfall events 
or increased evapotranspiration due to differences in solar radiation. 
Once the combined score of ETref and P is above 0, meaning that the 
difference between the ETref and P of the natural pixel is smaller than the 
averaged standard deviation of the two, a natural pixel is finally 
considered hydrologically similar to its irrigated agricultural 
counterpart. 

For each irrigated agricultural pixel, the algorithm loops over all the 
natural pixels in a spiral manner, starting close to the irrigated pixel. The 
“thr_nsimpix_max” parameter tells the algorithm how many similar 
natural pixels have to be found per irrigated pixel. Once this number is 
met, or all the natural pixels are handled, the algorithm stops looking for 
natural pixels and continues to the next irrigated pixel. Because this 
process is computationally expensive, the raster data is processed per 
block and the Numba library (Lam et al., 2015) is used to drastically 
increase the processing speed. To decrease the runtime even further, 
before running the HSP algorithm, per irrigated agricultural pixel the 
distance to the closest natural pixels is calculated and stored in a raster. 
This enables the HSP algorithm to start searching for similar natural 
pixels at the minimum known distance to a natural pixel for each irri-
gated agricultural pixel. 

Once the HSP algorithm is done looping over all the natural pixels, 
the stored scores and distances are normalized so they range between 
0 and 1. With 1 indicating perfect similarity and 0 indicating the lowest 
allowed similarity. This normalization is, for the static scores, based on 
the thr parameter and for the distances based on the maximum distance. 
The non ETref and P scores are normalized based on the minimum and 
maximum scores found for those inputs, per study period. Normalizing 
these scores enables one to generate a total score for each natural pixel, 
which is used as a weight to calculate a weighted ETact for all the natural 
pixels. This weighted ETact favors natural pixels with high total scores 
over natural pixels with lower scores. The weighted natural ETact is then 
subtracted from the ETact of the irrigated agricultural pixel, which yields 
the incremental evapotranspiration (ETincr). These steps are explained in 
Eqs. (12)− (15). 

sper,norm =
sper − sper,min

sper,max − sper,min

sstat,norm =
sstat − thr
1 − thr

sdist,norm =
sdist − sdist,min

sdist,max − sdist,min

(12)  

w =
sper,norm + sstat,norm + sdist,norm

3
(13)  

ETactnat,weighted =
∑nsimilar

i=1

ETactnat (i)w(i)∑
w

(14)  

ETincr = ETactirr − ETactnat,weighted (15) 

Here, sper represents the score of the periodic (ETref and P) inputs, sstat 

the score of the static inputs (slope, aspect, TWI, and sand, silt, and clay 
content), and sdist the score of the distance, which are all expressed as an 
array based on the subset of most similar natural pixels. The weight (w) 
is calculated for the normalized sper, sstat, and sdist, and used to calculate 
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the weighted ETact for all the natural pixels in the subset. The incre-
mental evapotranspiration (ETincr) is then calculated by subtracting 
ETactnat,weighted from the ETact of the irrigated pixel (ETact irr). At this point, the 
algorithm is ready to loop over the next irrigated agricultural pixel. 

2.2.3. Irrigation quantification 
The ETincr is expressed in mm, similar to the ETact. To convert this 

unit to volumes, the ETincr is multiplied by the area of the agricultural 
field. A prerequisite for calculating the water use is that, per operational 
unit, either being fields, a cluster of fields, or catchments, the perimeter 
of these operational units is known. However, at field level, those shapes 
are often not only showing agricultural fields, but instead are linked 
cadastral units, including roads, houses, reservoirs, and other non- 
agricultural areas. To increase the accuracy of the water use estimates, 
the same land cover map that is used to distinguish natural and irrigated 
agricultural pixels is used to calculate the area of irrigated agriculture 
(Airr) within each operational unit. This area (m2) is then used to convert 
the ETincr (mm) to the water use (Q) in m3. This process is explained by 
Eq. (16). 

Q =
ETincr Airr

1000
(16)  

2.3. Statistical analysis 

To assess the accuracy of the estimated water use, multiple statistical 
metrics were obtained. To assess the goodness of fit between the 
observed and estimated water use, the coefficient of determination (R2) 
and the root mean squared error (RMSE) were calculated. The RMSE is 
chosen as an additional metric since it is expressed in the same unit as 
the modeled outputs and has a strong foundation in model evaluation 
studies (Chai and Draxler, 2014). The R2 and RMSE were calculated 
using the Scikit Learn (sklearn) package (Pedregosa et al., 2011). 
Additionally, a significance analysis for all the calculated coefficients of 
determination was performed using the statsmodels package (Seabold 
and Perktold, 2010). To prove the significance of the calculated 
R2-values, the corresponding p-values should be larger than α, which 
was set to 0.05. Finally, the deviation between the seasonal observations 
and estimates (Di) was calculated. This metric, which is expressed in 
percentages, shows per individual field the accuracy of the product. 
Except for the deviation, all the statistical metrics were calculated both 
on a monthly and seasonal timestep. 

We also introduce a different metric to show the temporal accuracy 
of the monthly estimates, i.e. the Kling-Gupta efficiency (KGE). The KGE 
combines the correlation coefficient (r), the variability error (a), and the 
bias error (b), which makes it an ideal metric for time series accuracy 
assessment (Gupta et al., 2009). The KGE ranges from -∞ to 1, with 1 
indicating a perfect fit. For the well-established Nash-Sutcliffe efficiency 
(NSE), a hydrological model is considered to have a reasonable perfor-
mance when the NSE is higher than 0, with NSE = 0 indicating that the 
mean of the predictions is similar to the mean of the observations. For 
the KGE, when using the same criteria, the threshold between a poorly 
performing and reasonable model lies at a KGE of − 0.4 (Knoben et al., 
2019). 

2.4. Study areas 

Currently, the proposed irrigation quantification method is imple-
mented in the operational Water Auditing application and used in South 
Africa by several Catchment Management Authorities (CMA’s) (ESA, 
2021). However, this operational product delivers medium resolution 
(250 m) data and is mostly used for monitoring large-scale systems. The 
first study area where a high resolution (10 m) version of the product 
was applied is the Hex Valley, a highly productive region in the Western 
Cape, South Africa. To test the accuracy of the application outside South 
Africa, two additional validation sites were chosen, i.e. the Ebro Basin in 

Catalonia, Spain, and the Namoi River Catchment in New South Wales, 
Australia (Fig. 3). 

2.4.1. Hex Valley, Western Cape, South Africa 
The Hex River Valley is located in the Breede River Catchment in the 

Western Cape Province. The valley is a relatively narrow valley with a 
length of 25 km and a maximum width of 4 km, bounded by high 
mountain ranges on either side (Fig. 3). 

The area is classified as a cold semi-arid climate (BSk) by the Köppen- 
Geiger system. In De Doorns, a town located in the center of the valley, 
the average annual temperature is 17.2 ◦C. The warmest month is 
February at 23.9 ◦C and the coldest month is July at 9.9 ◦C. The annual 
precipitation is 240 mm, with February being the driest (~10 mm) and 
June the wettest (~30 mm) (Muñoz-Sabater, 2019). The agricultural 
activities in the Hex River Valley are centered around the commercial 
cultivation of table grapes which are grown on 5,200 ha of land. The 
source of irrigation is either originating from surface water (40%) or 
groundwater (60%) (Ncube, 2018). 

In total, for 15 fields, seasonal water meter observations were pro-
vided by the Hex Valley Water Users Association, covering September 
2018 until May 2019. For 12 out of the 15 fields, weekly data was also 
made available and converted to a monthly interval. 

2.4.2. Ebro Basin, Catalonia, Spain 
The Ebro River basin is the largest Mediterranean basin of the Iberian 

Peninsula, the river has the highest natural mean discharge in Spain. The 
catchment is enclosed by the Cantabrian Range and the Pyrenees on the 
north, and by the Iberian Mountains on the south. An extensive irriga-
tion network was built to store and transport Pyrenean water to the 
plains to sustain the irrigated area that covers around 45% of the basin 
(Milano et al., 2013). 

The study area is located in the eastern part of the Ebro catchment 
surrounding the town Lleida, focusing around the Urgell and Algerri 
Balaguer Canals, and is roughly 9,000 km2 in size (Fig. 3). The climate is 
a humid subtropical climate (Cfa). The mean maximum summer and 
winter temperatures are 23.0 ◦C and 3.5 ◦C, respectively. The average 
annual precipitation is 680 mm, with the lowest monthly precipitation 
in February (~30 mm) and the highest in September (~80 mm) 
(Muñoz-Sabater, 2019). 

Dominant crop types in the area are wheat, corn, and alfalfa. 
Perennial crops are mainly fruit trees, olive trees, and vineyards. Irri-
gation is applied either using inundation, drip, or sprinkler systems (Gao 
et al., 2018). 

Daily water meter data was made available by the Institute of Agri-
food Research and Technology (IRTA) from April until September 2020, 
for an apple orchard and two vineyards. 

2.4.3. Namoi River, New South Wales, Australia 
The Namoi catchment is part of the Murray Darling basin and is 

completely situated in New South Wales, Australia. The catchment is 
43,000 km2 and the average discharge of the river at the outlet is 25 m3/ 
s (Arshad et al., 2014; Barma Water Resources et al., 2012). The study 
area of this research, as shown in Fig. 3, is located between the towns of 
Narrabri in the northwest, and Boggabri in the southeast. Agriculture is 
mainly practiced next to the river. The area also includes some nature 
reserves. In the southeast of the study area, the Boggabri Coal mine is 
situated, it abstracts approximately 270,000 m3 of groundwater per year 
(Herron et al., 2018). Farmers are mostly reliant on groundwater, but 
surface water is also extracted through permits. In times of high dis-
charges, surface water can also be accessed without registration, which 
is called supplementary water (Arshad et al., 2014; Barma Water Re-
sources et al., 2012). The climate in the area is a humid subtropical 
climate (Cfa). The mean maximum summer and winter temperatures are 
33.8 ◦C and 18.0 ◦C, respectively. The average annual precipitation sum 
is 650 mm, with precipitation amounts peaking in summer 
(~80 mm/month) and being lowest in winter (~40 mm/month) 
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(Bureau of Meteorology, 2021). Furrow irrigation is the main type of 
irrigation in the area, and the furrows are fed with water that is stored in 
local reservoirs. 

The water meter observation data was provided by Water Technol-
ogy (www.watertech.com.au) and was based on cadastral data (Lots) 
from the NSW Land Registry Service (LRS) and spreadsheets provided by 
the Department of Planning and Environment (DPE). The dataset con-
sists of 69 clusters, and each cluster consists of multiple agricultural 
fields. However, from the 69 available clusters, not all clusters contained 
areas that were classified as irrigated agriculture, and thus for those 
clusters no water use estimates were generated. Effectively, 12 of the 69 
clusters contained both water meter observations and water use esti-
mations, and these clusters were the focus of the validation study. The 
study period started in July 2017 and ended in June 2018. 

3. Results 

To validate the results of the Water Auditing application, we 
compared our water use estimates to the water meter observations of the 
three study areas. For all the study areas, both the monthly and the 
seasonal accumulated water use estimates were included in the com-
parison. To anonymise the water meter data, the field identifiers are 
altered to a generic format that starts with the area code (i.e. HEX, EBR, 
or NAM), followed by a number. 

3.1. Hex Valley, Western Cape, South Africa  

Fig. 4 shows the accumulated water use estimations for the 
2018–2019 season. The ETincr ranged from 200 to 1000 mm. Although 

Fig. 3. The Hex Valley study area (left), located in the Western Cape, South Africa; the Ebro basin study area (middle), located in Catalunya, Spain; and the Namoi 
river study area (right), located in New South Wales, Australia. 

Fig. 4. The accumulated seasonal water use estimates (ETincr) for the Hex Valley during the 2018–2019 season.  
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the main crop type in the area is table grapes, there were quite some 
local differences in the estimated water use. Even within each field unit, 
the estimated water use ranges significantly, indicating the importance 
of having a high-resolution product when dealing with relatively small 
fields.  

Fig. 5 shows the correlation between the monthly and seasonal 
water use estimates compared to the observed water use. 

For both the monthly and seasonal products, there was a strong 
correlation between the observed and estimated water use, with an R2 of 
0.751 and 0.780 respectively. Both coefficients of determination showed 
to be significant (p ≪ 0.05). Moreover, the trendline was close to the 1:1- 
line, indicating that there is no general over or underestimation. The 
correlation for the monthly estimates was lower compared to the sea-
sonal product, which could indicate that the timing of the water use 
estimates is not always correct. For the seasonal product, 6 of the 15 
fields showed a deviation lower than 20%. The error was generally 
larger for fields with lower observed water use, compared to the one for 
large consumers. 

3.2. Ebro Basin, Catalonia, Spain 

For the Ebro region, the seasonal accumulated ETincr estimates 
ranged between 0 and 800 mm (Fig. 6), while the maximum averaged 
monthly assessment was about 130 mm/month. The monthly value is 
analogous to the one of the Hex Valley (~110 mm/month). This illus-
trates that for equivalent regions in terms of climate comparable 
evapotranspiration amounts linked to irrigation can be expected. 

Despite the size of the study area, only three water meter observa-
tions were available for this research. Fig. 7 shows that, for these three 
plots, the monthly water use estimates were inaccurate. The corre-
sponding R2 and p-value were 0.051 and 3.68e-05, respectively. Because 
of the limited amount of validation data, the seasonal results were not 
statistically significant (p = 0.084). The seasonal product showed that 
the water use of EBR-3 was accurately estimated (0.5% deviation), the 
water use of EBR-2 was moderately overestimated (23.3% deviation), 
and the water use of EBR-1 was highly underestimated (53.9% devia-
tion). Both EBR-2 and EBR-3 are vineyards, and their errors are in the 
same range as the vineyards of the Hex Valley (Fig. 6). EBR-1, on the 
other hand, is an apple orchard, which might be explanatory for the 
large deviation. For this study area, the timing issues for the monthly 
water use estimates were also visible, similar to the results for the Hex 
Valley. 

3.3. Namoi River, New South Wales, Australia 

For the Namoi area, the maximum estimated incremental evapo-
transpiration was 600 mm over the entire season, which translated to an 
average maximum of 50 mm/month (Fig. 8). This amount is signifi-
cantly lower compared to the Ebro and Hex Valley regions. This 
disparity could be linked to the differences in crop types, with perennial 
crops being abundant in the Ebro and Hex Valley regions, while in 
Namoi annual crops are dominant. In Fig. 9, similar to the other vali-
dation areas, the large spatial variability between fields was also visible. 

For these 12 clusters, resembling the findings in the Ebro basin, the 
monthly estimates did generally not correspond accurately with the 
water meter observations (Fig. 9). With an R2 of 0.151, the quality of the 
estimates was higher compared to the Ebro basin but much lower 
compared to the Hex Valley. Also, the trend line shows that, generally, 
the water use is underestimated for this region. Especially for low water 
use observations, the deviations are large. However, the seasonal 
product shows that, despite the low monthly accuracy, the accumulated 
water use corresponds better with the observations (R2 of 0.406). Both 
coefficients of determination were statistically significant (p < 0.05). 

3.4. Study area comparisons 

Tables 1, 2, and 3 show the general statistics of the monthly and 
seasonal water use estimates per field/cluster of the Hex Valley, Ebro, 
and Namoi study areas, respectively. 

Within each table, the last row shows the mean of the estimated and 
observed water use per study area. For the Hex Valley the mean dif-
ference between the estimated and observed water use was 4.5%, indi-
cating that, on a spatiotemporal scale, the model is performing well. For 
the Ebro and Namoi study areas, this difference was 13.8% and 21.9%, 
respectively, indicating a lower agreement with regional seasonal water 
use observations. For both study areas, the water use is generally 
underestimated. The mean deviation (Di) for the Hex Valley and Ebro 
study areas was comparable, with 26.4% and 26.9%, respectively. For 
the Namoi study area, the mean deviation was larger, with 47.8%. When 
combining the water use estimates and observations of all the three 
study areas, the water use was underestimated by 18.8%. 

For 2 out of the 30 fields, the KGE is below − 0.4. The KGE value for 
NAM-5 is − 0.585, while the one for NAM-12 is − 0.560. In total, there 
are 6 fields with a negative KGE, and 8 with a KGE above 0.5. For the 
Hex Valley and the Ebro study areas, the mean KGE is 0.385 and 0.405, 
respectively, indicating that the temporal water use patterns were 
reasonably well modeled. In contrast, the mean KGE of the Namoi area 
was only 0.092. Furthermore, 5 of the 6 negative KGE values originate 

Fig. 5. The estimated water use compared to the observed water use for the Hex Valley at a monthly (left) and seasonal (right) time step.  
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from this study area. This shows that the temporal water use pattern in 
Namoi is not captured as well as for the other two study areas. 

3.5. Temporal water use patterns 

Our results show that, based on the KGE, the temporal water use 
patterns were not always accurately modeled. This is especially so for 
the Namoi area (Table 3). Fig. 10 demonstrates three different behaviors 
when comparing the estimated to the observed water uses in the Namoi 
area. 

It can be observed in the figure that, for clusters that behave like 
NAM-7, the volumes are not correctly modeled (Di = 76.0%). For the 
ones that act similarly as NAM-3, the cumulative water use is accurately 
estimated (Di = 8.7%), but the timing is off. Lastly, the results of a few 
clusters, like NAM-11, show that the model is accurate in both the timing 
and cumulative amounts (KGE = 0.829; Di = 2.6%). Although the main 
irrigation type in the area is furrow irrigation, which is assumed to be 

modeled less accurately, the temporal pattern should not have been 
affected, only the absolute estimated volumes applied to the field. The 
most likely cause for the general low KGE values is the location of the 
water meter itself. In arid climates, often reservoirs are constructed to 
store water for drier seasons (Biemans et al., 2011), which is also the 
case for the Namoi catchment (Pittock, 2016). In this area, the aim of 
installing the water meters is to control if a farmer withdraws the legal 
amount of ground or surface water, not to inform how much water is 
directly applied to the crops (Barma Water Resources et al., 2012). 
Therefore, there is a delay between the filling of the reservoir and the 
actual crop water consumption. Water is mostly pumped into the res-
ervoirs during the winter, while irrigation is mostly applied during 
summer (Fuentes et al., 2021). This effect can be illustrated when 
comparing NAM-7 and NAM-11, the fields with the largest and smallest 
deviation in estimated and observed water use, respectively. 

Fig. 11 shows the change in water surface area of the reservoirs 
connected to NAM-7 and NAM-11, which is derived from Sentinel-2 

Fig. 6. The accumulated seasonal water use estimates (ETincr) for the Ebro study area during the 2020 season.  

Fig. 7. The estimated water use compared to the observed water use for the Ebro study area at a monthly (left) and seasonal (right) time step.  
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Level-1 C observations using the Normalised Difference Water Index 
(NDWI) (McFeeters, 1996). NDWI pixels with a value larger than 0 are 
classified as water. There is a clear distinction between both clusters, 
with NAM-11 showing a relatively constant surface water area from 
winter till summer, while for NAM-7 the surface water area drops from 
18 ha to less than 5 ha at the start of the season. In November, the 
reservoir of NAM-7 was rapidly filled and finally emptied with only 3 ha 
remaining at the beginning of July 2018. The reservoir of NAM-11 starts 
depleting in March 2018 and finally has a water surface area of 9 ha. 
Due to the analysis being done on Sentinel-2 Level-1 C images, atmo-
spheric interference could have some effects on the surface water area 
observations, but the main differences between the two clusters are 
clear. 

Based on Figs. 10 and 11, one could argue that more water is dis-
placed throughout the season for NAM-7 compared to NAM-11. It is also 
evident that the reservoir of NAM-7 has been emptied and filled during 
the growing season, while the reservoir of NAM-11 remained more 

constant. For NAM-7, water is mostly displaced to fill the reservoir, not 
to directly irrigate the crops. For NAM-11, the pattern of the water 
surface area does not correlate well with the water meter observations, 
meaning that the water that is pumped into the reservoir is more directly 
used for irrigation. Excluding NAM-7 from the analysis shown in Fig. 9 
would yield a seasonal R2 of 0.793 instead of 0.406. 

4. Discussion 

In this research, we demonstrate the potential of the HSP algorithm 
to distinguish between the ET of natural and irrigated crops. In addition, 
we illustrate the capability of this model to calculate water use on a field 
level using high resolution (10 m) satellite data. However, the results 
also show limitations on the estimation of irrigation water use. For some 
fields, the estimates on monthly and on seasonal scales are not accurate. 
In this section, we provide a discussion on the used methods and their 
impact on the accuracy of the water use estimates. We also present a 

Fig. 8. The accumulated seasonal water use estimates (ETincr) for the Namoi study area during the 2017–2018 season.  

Fig. 9. The estimated water use compared to the observed water use for the Namoi study area at a monthly (left) and seasonal (right) time step.  
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critical note on comparing in-situ observations with satellite-based 
models. 

4.1. Model limitations 

As with all types of modeling, compromises need to be made between 
computational efficiency and modeling accuracy. Since ETLook and the 
HSP algorithm are computationally expensive, multiple simplifications 
that might affect the quality of the final product have been applied. 

4.1.1. Evapotranspiration modeling 
For all the study areas, the ETLook algorithm was run to produce 

daily evapotranspiration estimates. These were converted to monthly 
and seasonal values to compare with equivalent water use estimates. 

Since ETLook calculates E and T based on a modified Penman- 
Monteith equation, it shares the same limitations. The main one is the 
fact that the stomatal resistance and soil resistance are hard to quantify. 
Regarding the stomatal resistance, there is a dependence on land use. 
Each class is assigned a defined value for the canopy resistance. So the 
quality of the transpiration estimate is dependent on the quality of the 
land use classification. In its turn, the soil resistance is a function of the 
topsoil moisture content. So any uncertainty in the topsoil moisture 
estimations is propagated to the calculation of the evaporation (Subedi 
and Chávez, 2015). 

While some input data for ETLook is available daily (meteorological 
inputs), others are less frequent (NDVI, albedo, and land surface tem-
perature) and subject to cloud cover. In cloudless conditions, we can 
predict that every pixel would be seen by either Sentinel 2 or Landsat 8 
about 90 times per year. However, that is hardly the case. The impact of 
this on the HSP results is hard to predict. For the irrigated pixels, on the 
one hand, it is expected that the variation of optical inputs is well 
captured, as farmers would irrigate more during drier, cloudless con-
ditions. For the natural rain-fed vegetation, on the other hand, important 
phenological information might be missed during the cloudy periods. 

In addition, the source of the daily meteorological data interferes 
with the accuracy of both ETlook and HSP algorithms. For one study 
area, the Ebro basin, the data came exclusively from climate models. In 

Table 1 
Statistics summary, i.e. seasonal estimated water use (Qest), seasonal observed 
water use (Qobs), the deviation between Qest and Qobs (Di), Kling-Gupta effi-
ciency (KGE), and root mean squared error (RMSE), of the monthly and seasonal 
water use estimations for the Hex Valley. For three fields, i.e. HEX-3, 6, and 9, 
only seasonal water use observations were available resulting in the KGE and 
RMSE not being calculated.  

ID Qest Qobs Di KGE RMSE 
m3 m3 % - m3 

HEX-1 123,298 161,270 23.5 0.682 4,813 
HEX-2 281,167 210,115 33.8 0.294 14,850 
HEX-3 331,437 297,268 11.5 – – 
HEX-4 107,181 101,218 5.9 0.331 5,506 
HEX-5 156,283 94,346 65.6 -0.120 10,050 
HEX-6 300,922 398,198 24.4 – – 
HEX-7 59,261 38,965 52.1 0.444 2,975 
HEX-8 38,626 42,966 10.1 0.534 2,062 
HEX-9 175,643 189,522 7.3 – – 
HEX-10 76,447 52,059 46.8 0.185 4,477 
HEX-11 147,601 104,888 40.7 0.348 7,684 
HEX-12 100,720 155,234 35.1 0.341 9,450 
HEX-13 296,370 280,450 5.7 0.539 14,081 
HEX-14 242,617 220,190 10.2 0.558 12,794 
HEX-15 128,565 104,189 23.4 0.479 6,461 
Mean 171,076 163,392 4.7 0.385 7,934  

Table 2 
Statistics summary, i.e. seasonal estimated water use (Qest), seasonal observed 
water use (Qobs), the deviation between Qest and Qobs (Di), Kling-Gupta effi-
ciency (KGE), of the monthly and seasonal water use estimations for the Ebro 
study area.  

ID Qest Qobs Di KGE RMSE 
m3 m3 % - m3 

EBR-1  3,553  7,710  53.9  0.112  854 
EBR-2  8,542  6,927  23.3  0.543  955 
EBR-3  3,950  3,971  0.5  0.561  477 
Mean  5,348  6,203  13.8  0.405  762  

Table 3 
Statistics summary, i.e. seasonal estimated water use (Qest), seasonal observed 
water use (Qobs), the eviation between Qest and Qobs (Di), Kling-Gupta efficiency 
(KGE), of the monthly and seasonal water use estimations for the Namoi study 
area.  

ID Qest Qobs Di KGE RMSE 
m3 m3 % - m3 

NAM-1 1,336,500 1,962,000 31.9 0.115 213,074 
NAM-2 105,930 100,000 5.9 -0.026 15,556 
NAM-3 3,048,350 3,339,000 8.7 0.415 330,677 
NAM-4 509,370 282,000 80.6 -0.364 54,796 
NAM-5 1,372,400 562,600 143.9 -0.585 100,237 
NAM-6 1,423,250 2,507,700 43.2 0.082 283,532 
NAM-7 892,420 3,718,600 76.0 -0.111 420,651 
NAM-8 892,030 818,700 9.0 0.484 89,367 
NAM-9 2,602,950 3,332,000 21.9 0.262 332,167 
NAM-10 640,080 533,000 20.1 0.559 55,375 
NAM-11 1,456,770 1,420,100 2.6 0.829 65,169 
NAM-12 345,780 150,300 130.1 -0.560 28,523 
Mean 1,218,782 1,560,500 21.9 0.092 165,761  

Fig. 10. Comparison between the estimated (solid lines) and observed (dashed 
lines) water use for three clusters of fields in the Namoi study area, at a monthly 
interval. The top figure shows the monthly water use and the bottom the 
monthly cumulative water use. The second y-axis shows a bar plot with the 
difference between the reference evapotranspiration (ETref) and the precipita-
tion (P). 
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the other two regions, modeled data was only employed when locally 
measured data was not available. 

4.1.2. Definition of hydrological similarity 
Currently, the similarity is based on the slope, aspect, TWI, clay 

content, silt content, and sand content. However, these inputs are all 
considered of equal importance when calculating the similarity. One 
could argue that some of these inputs are more important than others for 
explaining the hydrogeomorphological differences between pixels. 
Future studies should include decisions on the weight of each static 
input when calculating the similarity score. 

Furthermore, additional soil characteristics from the SoilGrids 
database could be included (Hengl et al., 2017). However, due to the 
limited search radius of the algorithm (a few kilometers), it is not ex-
pected that these characteristics will show a significant difference, 
without showing a significant change in sand, silt, and clay content. 

Besides the current static inputs, additional periodic datasets could 
be obtained to assess the hydrological similarity. Examples of such 

datasets could be soil moisture estimates (Massari et al., 2021) and 
rooting depth models (de Wit et al., 2019). Soil moisture datasets give 
insight into the spatiotemporal variability of the water availability, 
where the currently used TWI only shows the spatial distribution based 
on topography. Rooting depth models can be implemented to more 
accurately calculate the Total Available Water (TAW) parameter. 

4.1.3. Availability of natural pixels 
The HSP algorithm depends on the availability of natural pixels. 

However, some agricultural schemes might be so extensive that it is 
difficult to find a suitable subset of natural pixels. This is evident for the 
Ebro study area, as shown in Fig. 12. 

The study area in the Ebro basin is effectively one entire irrigation 
scheme with limited natural areas, while the Hex Valley is fully sur-
rounded by natural pixels. For the Hex Valley, the maximum average 
distance to the subset of natural pixels is about 1 km, while for the Ebro 
study area, this value can go up to 3 km for some pixels. This increase in 
distance induces uncertainties when comparing the ET of native 

Fig. 11. The water surface area time series of the reservoirs of NAM-7 (blue) and NAM-11 (red) derived using the Normalised Difference Water Index (NDWI) 
acquired from Sentinel-2 Level-1 C satellite observations. On the top (NAM-11) and the bottom (NAM-7) of the plot, a couple of NDWI images of the two reservoirs 
are shown as an example, with dark pixels indicating water surfaces. The hollow points correspond to the timing of the NDWI images shown in the figure. 

Fig. 12. Comparison between the amount of natural and irrigated agricultural pixels (left); and between the average distance to the subset of natural pixels (right) for 
the Ebro (large images) and Hex Valley (small images) study areas. 
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vegetation and irrigated agriculture as it might violate the concept that 
all the other terms in the water balance (Eq. (1)) must be similar. Thus, 
for areas like the Ebro basin, alternative approaches should be 
considered. 

In addition, as mentioned by Van Eekelen et al. (2015), all land cover 
classification maps have their inaccuracies, which will affect the water 
use estimates. If, for example, a built-up area is classified as natural 
vegetation, the incremental ET and the water use will be overestimated. 
To decrease the impact of falsely classified natural areas, the size of the 
subset of similar pixels can be increased. However, this impacts the 
computational efficiency and increases the mean distance of the subset, 
affecting its hydrological similarity. A second option is to exclude nat-
ural pixels which do not show any vegetation development throughout 
the season, for example, by excluding pixels with a maximum seasonal 
NDVI of 0.3. 

Another solution could be to compare non-irrigated agricultural 
pixels to irrigated ones. That would solve the issue of having limited 
access to natural pixels. On the other hand, current land cover maps are 
not reliable enough to assume that non-irrigated plots are indeed not 
irrigated. Such maps are usually not updated every year. Furthermore, 
annual crops often rotate every season, resulting in changing irrigation 
practices. It raises the need for an annually or seasonally updated irri-
gated area map, which will be the focus of future studies. Having an up- 
to-date and accurate irrigated area map would also improve the accu-
racy of the water use estimates because the ETincr is only calculated for 
areas that are classified as irrigated agriculture. If the current land cover 
maps underestimate the irrigated area, the water use is also 
underestimated. 

4.2. Validity of comparison with water meters 

Besides the known limitations of the models, directly comparing 
satellite observations with in-situ measurements is always challenging 
(Loew et al., 2017). A water meter is not a standardized instrument, and 
each system has its inaccuracies (Boman and Shukla, 2009; Dobriyal 
et al., 2017; Su et al., 2021). Hightech agricultural systems might be 
equipped with fully automated and efficient irrigation equipment which 
accurately measure the water use. Nevertheless, most schemes are 
inefficient and depend on manual labor. Furrow irrigation is among the 
least efficient irrigation types, with an overall efficiency of 45%, 
whereas for drip irrigation, considered the most efficient type, the 
overall efficiency rises to 90% (Savva and Frenken, 2002). An added 
challenge is that, while water meters account for all the water applied to 
the field, only the irrigated water consumed by the crop is observed in 
our satellite-based measurements. Intermediate losses, such as open 
water evaporation, percolation, runoff, and leakages are not monitored. 
Thus, in its current form, satellite-based water use estimates should be 
more comparable to drip irrigation systems and less related to poorly 
performing irrigation types such as furrow or sprinkler irrigation. 

It is also known that water meters are not always installed to monitor 
the water that is directly applied to the field, but rather to observe how 
much water is taken from the environment and stored in reservoirs 
(Fuentes et al., 2021). Fig. 11 illustrates that this is presumably the 
reason for the mismatch in the temporal patterns of the estimated and 
observed water use (Table 3). It also shows that for a reservoir that 
fluctuates a lot in the amount of water stored (NAM-7), the seasonal 
accuracy of the satellite based water use estimates decreased signifi-
cantly. It is therefore crucial that when comparing water meter data to 
remote sensing based water use estimates, the water meter is directly 
coupled to the irrigation system, instead of being connected to an in-
termediate reservoir. 

5. Conclusions 

In this study, we demonstrated that, depending on the study area, it 
is possible to accurately estimate the monthly and seasonal water use of 

irrigated agriculture using high resolution (10 m) remote sensing-based 
evapotranspiration estimates and the newly introduced HSP algorithm. 

The Hex Valley (South Africa) study area yielded the best results, 
with a seasonal R2 of 0.780. For the Ebro (Spain) study area, limited 
validation data was available, but in general, the results were less ac-
curate than for the Hex Valley. The limited amount of natural pixels in 
the Ebro study area (Fig. 12) also made the execution of the HSP algo-
rithm more challenging. The results of the Namoi (Australia) study area 
were accurate at seasonal scale (R2 = 0.793; excluding NAM-7) but 
showed timing issues on a monthly basis due to the water meters being 
connected to large reservoirs instead of being directly connected to the 
irrigation systems. 

A use case of the proposed method, which we already implemented 
in some South African Catchment Management Agencies, is to compare 
our water use estimates with predefined water allocations. This enables 
local water authorities to identify big water consumers and to enforce 
local withdrawal laws in times of drought. Further research will 
implement an annual irrigated area map to improve the accuracy of the 
model, and the HSP algorithm will subsequently be tested while 
comparing irrigated to non-irrigated crops for areas that have limited 
availability of natural pixels. 
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