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Abstract: To increase water productivity and assess water footprints in irrigated systems, there is a 

need to develop cheap and readily available estimates of components of water balance at fine spatial 

scales. Recent developments in satellite remote sensing platforms and modelling capacities have 

opened opportunities to address this need, such as those being developed in the WaterSENSE pro-

ject. This paper showed how evapotranspiration, soil moisture, and farm-dam water volumes can 

be quantified based on the Copernicus data from the Sentinel satellite constellation. This highlights 

distinct differences between energy balance and crop factor approaches and estimates that can be 

derived from the point scale to the landscape scale. Differences in the results are related to assump-

tions in deriving evapotranspiration from remote sensing data. Advances in different parts of the 

water cycle and opportunities for crop detection and yield forecasting mean that crop water produc-

tivity can be quantified at field to landscape scales, but uncertainties are highly dependent on input 

data availability and reference validation data. 
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1. Introduction 

Water is crucial for all natural systems, including human life [1]. For example, feed-

ing the world’s population is dependent on having sufficient water available [2], but hu-

man use of water is also causing significant stress on natural ecosystems [3]. Globally, 

through the sustainable development goals (https://sdgs.un.org/) (accessed on 23 Febru-

ary 2022) and, for example, through the European Green Deal (https://ec.eu-

ropa.eu/info/strategy/priorities-2019-2024/european-green-deal_en) (accessed on 23 Feb-

ruary 2022), there is an increased focus on improving water use efficiency and the man-

agement of water losses. Closing the “yield gap” by improving crop water productivity 

has therefore been an important area of research [4,5] as this can potentially increase food 

production while minimising environmental stresses [6].  

A key tool to investigate the sustainability of crop production as a function of water 

use is through water footprints [3,7]. Water footprint research now covers almost 20 years 

since the original article by Hoekstra and Hung [8]. However, Quintero et al. [7] identified 

the key limitations to apply water footprint analysis for the two main directions in this 

research area. These limitations include a lack of accurate spatial ET estimates, lack of 

understanding of the fine scale spatial variation in inputs and outputs, and lack of under-

standing of on-farm storage of water. 
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Furthermore, there are major data limitations in capturing the desired detail in the 

water cycle, across large areas such as in the Western US [9] and the Murray Darling Basin 

in Australia [10]. Observations on-the-ground from gauging are sparse, and data on actual 

withdrawals and crop water use are often limited [9,11,12]. The problem is further exac-

erbated by economic rationalisation in many hydrometric departments, resulting in a de-

cline in the actual number of observation points [13]. 

As a result, many global water footprint and water productivity studies are on very 

large spatial and temporal scales [3,14] as the spatial data often are not available at finer 

scales. Typical scales for water footprints are 5 arc-seconds per grid cell for the spatial 

extent and monthly scales in the time domain [3,15]. Alternatively, the data can be ana-

lysed at county level [16], which can still be large. Finally, water footprints or crop produc-

tivity analysed at a single point using crop modelling [17,18] do not easily scale to the 

larger catchment or country scale. 

In contrast, improving on-farm water management and maximising green water use 

for crop productivity requires tools and quantification at much smaller scales from the 

field (paddock) to the farm scale [19]. In addition, irrigation scheduling applications re-

quire temporal scales that are shorter than a month [20]. All of this will require data at a 

much finer spatial and temporal scale than has been demonstrated so far [19], which is 

also needed if the focus is on policy compliance for environmental flow assessments [10]. 

However, investment in monitoring is expensive [21] and as a result the majority of irri-

gation systems remain unmonitored. Therefore, we need smart and new ways to observe 

the water balance at fine scales to enable improvements in water productivity (e.g., [22]). 

Luckily there are new approaches using finer-scale satellite data (e.g., Sentinel data 

as part of the EU Copernicus initiative) to observe the water cycle in much more detail 

[20,23,24]. However, as water information can only be inferred from satellite data rather 

than directly measured, there is a need for novel algorithms and direct testing against 

observed data. In addition, other data, such as data on soils, land cover, and digital eleva-

tion models (DEM) are generally needed to calculate and derive water cycle components 

[23–28]. Some of these might again be derived from remote sensing observations [23].  

Over time, many algorithms have been developed to estimate water balance compo-

nents (for example, see Calera et al. [20] for a list of ET algorithms based on remote sens-

ing). However, many of the algorithms are limited in application to specific locations, spe-

cific crops, or specific landscape systems. For real applied water-cycle monitoring for wa-

ter accounting purposes and crop productivity, the challenge remains to develop a library 

of algorithms that can be applied at any point on the globe at temporal and spatial scales 

that link to management.  

Despite the huge potential of remote sensing to observe the water cycle, challenges 

related to observing the water cycle have been well-documented over the last decade, e.g., 

[29–33]. Until recently, the spatial and temporal scale of satellite observations has been an 

issue [33,34]. However, new satellite constellations, such as Sentinel (e.g., [23,35]), have 

relatively finer spatial and temporal scales. However, an additional effect from the in-

crease in temporal frequency and finer spatial scales is an increase in data volumes and 

processing. Some of this is alleviated by the development of cloud-based systems for spa-

tial data processing, such as Google Earth Engine [36], and in the future it can be expected 

that more of these solutions will be developed, making processing, analysing, and dis-

playing detailed satellite data easier. 
A further major issue, as highlighted by several of the recent reviews (e.g., [31,33]), 

is the continued dominance of localised regression or other data-based techniques to de-

rive relationships between satellite data and environmental data. This results in mostly 

local relationships in space and time, and often related to a specific land cover or water 

cycle element that cannot be easily extended to more global relationships. Far fewer pa-

pers focus on developing models that make use of the physical properties of the land cover 

or water cycle process and the way this is observed using the satellite sensors. For exam-
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ple, using the energy balance method (e.g., [37]), spatial contrasts in the observed land-

scape can be used to analyse energy differences and therefore estimate actual evapotran-

spiration. Such methods are more generalised and more widely applicable.  

Overall, remote sensing can be used quite effectively to observe fluxes and state var-

iables from the water cycle [30]. Evapotranspiration, precipitation, soil moisture, surface 

water levels, streamflow, water quality, and groundwater storage can generally be ob-

served through remote sensing [32]. These variables can be directly used in hydrological 

models, but are also of value for the agricultural sector, in particular for managing irriga-

tion. Examples of products aimed towards irrigation in the agricultural sector are provid-

ing irrigated water use and water extent estimates [12], irrigation efficiency evaluations 

[38], water accounting [34] reservoir volume estimates [27], and footprint assessments 

[39]. From these papers, Feng et al. [39], based on a quantitative literature review, also 

indicated that there are limited water footprint analyses using remote sensing.  

Many of the remote sensing-based water cycle observations can be (and have been) 

verified using in situ data. There has been extensive work on testing evapotranspiration 

(ET) satellite products against in situ data (i.e., [23,40]), as well as several large scale cam-

paigns to verify soil moisture products [41,42], and large continental scale comparisons of 

the overall water balance [43,44].  

However, most of the verification studies rely on a limited set of publicly available 

global data or are based on relatively small local data sets which cannot be extrapolated 

easily to other areas. To generalise the prediction of water cycle using satellite data, there 

is a continued need to collect validation data, particularly if the prediction spatial scale is 

finer. While there are substantial datasets for large water bodies (for example https://dash-

board.waterdata.usgs.gov/app/nwd/ and http://www.bom.gov.au/waterdata/) (accessed 

on 23 February 2022), there are essentially no observed data from on-farm irrigation res-

ervoirs. Similarly, while there are substantial datasets on modelled evapotranspiration, 

there are very few direct observations of vegetation sapflow that could link fine scales to 

satellite observations [45].  

As a result, there are significant uncertainties in the observation of finer-scale water-

cycle processes, and these uncertainties would need to be quantified [21,27]. More specif-

ically, the focus should be on the lack of accurate spatial ET estimates, lack of understand-

ing of the fine scale spatial variation in inputs and outputs, and lack of understanding of 

on-farm storage of water [7]. 

In summary, three major remaining challenges remain if detailed water accounting 

and water productivity tools need to be developed that can be scaled from the field and 

farm to the continent level:  

 The lack of detailed fine scale observations in space and time of water cycle compo-

nents, particularly for soil moisture, farm dam volumes, and vegetation transpira-

tion; 

 The need for models linking satellite data and water cycle components that are trans-

ferable in space and time, most likely using physical relationships or through fast 

self-calibrating data-based models; and  

 The need to quantify uncertainties in the satellite and water cycle relationships be-

yond reporting simple root mean square errors or bias. 

However, there are continued efforts to develop new tools, one of which is the EU-

funded WaterSENSE project (https://www.watersense.eu/) (accessed on 23 February 

2022). 

The objectives of this paper are, therefore, to firstly show progress towards an oper-

ational water cycle observation system for water accounting and water footprints at the 

farm and field scale based on a case study in Australia and, secondly, to outline the chal-

lenges to extend this system to other places in the world and the projected uncertainties 

related to input data availability. 
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2. Materials and Methods 

This paper concentrates on Australia because it offers a unique situation where water 

productivity is essential for maintaining agricultural export GDP, but there is extensive 

public scrutiny of the impact of irrigation on a sensitive environment [10,28]. In addition, 

Australia is fairly data rich [21], and therefore can be a good case study to investigate 

inherent uncertainties and further development needs.  

In the case studies, we demonstrate several applications of remote sensing to deliver 

on-farm water accounting for crop productivity and water footprint analyses. These ap-

plications were developed as part of the EU funded WaterSENSE project.  

2.1. Case Studies 

Two paddocks located in the Namoi catchment were selected as case study areas 

(Figure 1). The Namoi catchment is a large catchment (44,000 km2) located in New South 

Wales, Australia. It is a region with intensive agriculture and large areas of cotton pro-

duction. The selected study case areas are near the town of Narrabri in the middle of the 

catchment, and border the Namoi River, which functions as the main source for irrigation 

water. The study site a is located at approximate coordinates 149.9° and −30.4° (WGS 1984) 

at a mean elevation of 226.9 m and covers an area of 1032.57 ha. The site has a subtropical 

climate with no dry season, a mean annual rainfall of 629 mm, a mean temperature of 18.7 

°C, with a mean minimum temperature of 11.4 °C and a mean maximum temperature of 

26 °C. Site b is located nearby at approximate coordinates 150° and −30.5° at a mean ele-

vation of 233.1 m and is 460.55 ha. The site has a similar climate, with a mean annual 

rainfall of 615 mm and a mean annual temperature of 18.6 °C, with a mean minimum of 

11.3 °C and a mean maximum of 25.9 °C (http://www.bom.gov.au/climate/aver-

ages/maps.shtml) (accessed on 23 February 2022). 

 

Figure 1. Case study sites in the Namoi catchment. 
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2.2. Data Sources 

The sentinel 2 MSI, level 1C Top of Atmosphere (TOA) reflectance collection was 

used as an input to estimate different water budget components [46]. The collection was 

filtered based on the boundaries of the study sites and limited to the agricultural year 2017 

(from 1 July 2017to 30 June 2018). It was merged with the cloud probability collection 

derived from Sentinel 2 images through the s2cloudless library [47]. From this collection, 

pixels that contained a cloud probability greater than 30% were masked out from the Sen-

tinel 2 images. The Sentinel 2 collection was further filtered based on the properties of the 

images, filtering out images that contained more than 15% cloudy pixels. 

Monthly rasters of the Global Precipitation Measurement (GPM) version 6 were 

downloaded for precipitation input [48]. These rasters are monthly aggregations of rain-

fall at 0.1-degree spatial resolution that are processed through a unified algorithm for pre-

cipitation combining different sources of passive microwave instruments. We used global 

data here to demonstrate the application of methods to any location on the globe. Monthly 

aggregates of temperature, wind speed, and surface pressure from the European Centre 

for Medium-Range Weather Forecasts (ECMWF) Reanalysis version 5 (ERA5) collection 

at 0.25 degree resolution [49] were combined with the monthly average forcing shortwave 

incoming radiation band from the Famine Early Warning System Network (FEWS NET) 

Land Data Assimilation System (FLDAS) collection at 0.1 degree resolution [50] to calcu-

late reference evapotranspiration. Again, the analysis was based on globally available data 

to highlight the current “state of play” in this section. 

Water-use information per field cluster was obtained from the New South Wales De-

partment of Planning, Industry and Environment (DPIE). This information is monthly ag-

gregated. Additionally, modeling of water volumes in reservoirs was based on the Senti-

nel 2 data and LiDAR data. The LiDAR data was extracted from the ELVIS—Elevation 

and Depth—Foundation Spatial Data webpage (https://elevation.fsdf.org.au/ accessed on 

23 February 2022). A series of 1 m resolution DEM tiles was downloaded and mosaicked, 

covering the study region surface. 

Given the monthly scale of the NSW DPIE water-use data, all other data sources were 

aggregated to monthly data, including the reflectance information, which was averaged 

by month. Different spatial and temporal scales can be used for the estimates of the water 

cycle, but these will depend on the data sources used and the associated temporal resolu-

tion. For instance, while the forcing variable of the incoming radiation from the FLDAS 

data is aggregated by month, it can be replaced by the radiation contained in the Global 

Land Data Assimilation System (GLDAS) collection, which is based on 3-h estimates. The 

same applies to the ERA5 climate data, which can also be aggregated at a daily scale. 

2.3. Water Demand 

Water demand was assumed to be equal to the actual evapotranspiration lumped at 

the field scale. In this study, we compare the results of two remote sensing-based evapo-

transpiration algorithms, i.e., CMRSET [51] and ETLook [37], both using the Sentinel-2 

collection [51].  

For the CMRSET algorithm, we assumed a similar wavelength range between Senti-

nel 2 and the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, as the 

CMRSET methodology was developed and validated based on MODIS surface reflectance 

data. Thus, the crop coefficient (Kc) was calculated as: 

�� =  �� ��� (1 −  ���(−� × ����
� − � × ����)) (1)

where Kc max, a, α, b, β are parameters empirically calibrated for Australia and are 0.68, 

14.12, 2.482, −7.991, and 0.89. In this case, EVIr corresponds to the rescaled Enhanced Veg-

etation Index (EVI), where EVI was calculated based on: 

��� = � ×
����  − ����

����  +  �1 ×  ����  −  �2 × �����  +  � 
  (2)
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In Equation (2), ρNIR, ρRed, and ρBlue are the reflectances in the near-infrared, red, and 

blue wavelength spectrum, while G and L are the gain factor and a canopy background 

set to 2.5 and 1, respectively. EVIr was then calculated by clipping EVI to a minimum of 0 

and a maximum of 0.9. The RMI or Residual Moisture Index is a similar scaled index trun-

cated at 0 and 1, and was calculated by first calculating: 

��� =  ���� − (����  × ��� + ����) (3)

where KRMI and CRMI parameters have been calibrated in Australia, and correspond to 0.775 

and −0.0757, respectively. GVMI is the Global Vegetation Moisture Index, which can be 

calculated as: 

���� =
(����  +  0.1)  − (������  +  0.02)

(����  +  0.1)  + (������  +  0.02)
  (4)

where ρSWIR2 is the reflectance for the shortwave infrared wavelength of the spectrum. 

The actual evapotranspiration (AET) was then calculated using the FAO56 methodology 

[52]: 

��� =  ���  ×  �� (5)

And ETr is the reference evapotranspiration calculated using the FAO Penman-Mon-

teith equation [52]: 

��� =  
0.408∆(�� − �) +  �

��

� + 273 ��(�� − ��)

∆ + �(1 +  ����)
 

(6)

where Rn is the net radiation, G is the soil heat flux, Δ the saturation vapor pressure-tem-

perature slope, u2 the mean wind speed measured at 2 m, T the mean daily temperature, 

γ corresponds to the psychrometric constant, es to the saturation vapor pressure, ea the 

actual pressure vapor, while Cd and Cn are constants for standard short crops, equivalent 

to 0.34 and 900, respectively.  

The second approach was to use the ETLook algorithm to calculate the AET. This 

algorithm is based on the energy budget equation [37]: 

�� − � =  �� +  � (7)

In this budget, λE is the latent heat flux and H is the sensitive heat flux. In the ETLook 

algorithm, evapotranspiration is split into the evaporation component: 

� =  
�(��,����  −  �)  +  ���(

��

��,����
)

� +  �(1 + 
�����

��,����
)

 (8)

and the transpiration component: 

� =  

�(��,������  −  �)  +  ���(
��

��,������
)

� +  �(1 + 
�������

��,������
)

  (9)

both following typical Penman Monteith descriptions. Here, ρ is the air density and Cp the 

specific heat or dry air, with radiation inputs for soil (Rn,soil) and canopy (Rn,canopy), and re-

sistances for soil (rsoil) and canopy (rcanopy), and associated aerodynamic resistances for soil 

(ra,soil) and canopy (ra,canopy). The meteorological data necessary to derive these parameters 

were acquired from the Goddard Earth Observing System (GEOS) [53]. In addition, local 

data from the Bureau of Meteorology were used (www.bom.gov.au accessed on 23 Feb-

ruary 2022). The transmissivity was derived from the geostationary Himawari satellite 

[54]).  
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2.4. Water Supply 

Two sources of water supply were assumed. The first was the monthly rainfall ob-

tained from GPM rasters. Since GPM rainfall corresponds to average hourly values (mm 

h−1), these rasters were rescaled to the monthly aggregates by multiplying the individual 

rasters by 24 h and the number of days in the month. 

The second input was based on the monthly water use data supplied by NSW DPIE 

(Wuse). In some cases, more than a single record existed for each month, in which case the 

clusters were aggregated by month.  

2.5. A Measure of Efficiency in Water Use 

A water budget was implemented to understand the efficiency of the on-field water 

usage. The water deficit can be calculated as: 

����  =  ��� –  �� (10)

where Pp corresponds to rainfall, and Wdef is the water deficit. The Wdef, in this case, needs 

to be covered by irrigation and can be equivalent to the water use multiplied by the effi-

ciency of the system. Thus, the general efficiency of water withdrawals for irrigation (Eff) 

can be calculated as: 

��� =  
����

����
 (11)

where Wuse refers to the water used in the field clusters (Section 2.4). 

2.6. On-Farm Reservoir Volume Modeling 

Even if the previous relations can be observed with remote sensing or global data 

from the field, storage of water in reservoirs for irrigation is a common practice in Aus-

tralia. This has two major roles in the irrigation management scheme. The first is to pro-

vide buffering to manage possible delays between water orders, water deliveries, and ir-

rigation applications. The second is to store water captured on farms, as regulations re-

quire operations to reduce runoff to the environment due to the risk of pesticide move-

ments. Overall, this will allow the operation to reduce the water availability uncertainty 

and this can obscure the water budget estimates if ignored. Therefore, these storages are 

important in relation to the irrigation calendar and the water withdrawal dates, adding 

further information to close the water budget.  

In order to estimate the water volume time series in reservoirs, the methodology de-

veloped by Fuentes et al. [27] was used. This involves a Bayesian inference method to 

estimate water volumes in reservoirs and associated uncertainty, using level-volume 

curves previously calculated from the LiDAR data. Based on the theoretical relationship 

between surface reflectance and water surfaces, a linear regression between partially 

flooded areas and a water index developed by Fisher et al. [55] can be used to define a 

log-likelihood function. After defining suitable flat priors for the parameters of the model, 

a Markov Chain Monte Carlo (MCMC) approach was used to sample the priors and pre-

dict parameter posteriors. Based on this, the volumes and uncertainty can be estimated 

through the interpolation of level-volume curves. Uncertainties are based on the 16th and 

84th percentile of the water-level distributions (which represents one standard deviation) 

and the selection of a suitable maximum posterior elevation level. More detail on the 

methodology is provided in Fuentes et al. [27]. 
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2.7. Soil Moisture Modeling 

To demonstrate how satellite information can be integrated in soil moisture model-

ling, simulations using MOHID land were developed, assuming no irrigation takes place. 

This assumption was needed as detailed information about irrigation applications were 

not available (only bulk water use by month). MOHID Land is part of the modelling sys-

tem MOHID (http://www.mohid.com accessed on 23 February 2022) [56] and is a physi-

cally-based, spatially-distributed, continuous, and variable in time model used to estimate 

water cycle fluxes in watersheds. Porous media, and all related soil and aquifer physical 

characteristics can be integrated in a MOHID Land implementation. MOHID Land can 

also couple vegetation, atmosphere, and runoff processes in the overall model structure. 

MOHID Land runoff module calculates overland surface runoff over a grid as a func-

tion of the water column slopes between adjacent cells, described by the dynamic wave 

equation [57]. The Manning coefficient and the terrain’s elevation are necessary data for 

Runoff input (Table 1). 

Table 1. MOHID Land input parameters used in the soil moisture modelling based on reasonable 

literature values. 

Domain  Symbol  Unit  Description  Value  

Porous media θs  – Saturated water content  0.43 

 θr  – Residual water content  0.03 

 N  – Pore size distribution related term  1.56 

 A  m−1  Air entry pressure related term  3.6 

 Ks  m s−1  Saturated hydraulic conductivity  2.8 × 10−6  

Runoff n  s m−1/3 Surface Manning  0.038 

MOHID Land is a model that allows for a very small timestep for detailed modelled 

results. In fact, water moisture is a property that is characterised by a high variability in 

time due to the water balance resulting from the precipitation (rainfall) input and evapo-

ration output. For this property, a small timestep is required for a more detailed charac-

terisation of the water moisture behaviour during the modelled period. 

Although the water deficit component uses monthly aggregate precipitation datasets 

as input, for a MOHID Land implementation daily or hourly rainfall values are recom-

mended. With this in mind, the GPM version 6 rainfall was used as a 30-min time series. 

Furthermore, the reference evapotranspiration was used as a monthly average da-

taset (mm per day). Because reference evapotranspiration has a lower monthly variability 

than rainfall, no further data time interpolation was performed for this property.  

The porous media module calculates water fluxes in the soil medium, including wa-

ter transport due to the balance between pressure (gravity and suction) and resistance 

through the medium, infiltration, evaporation, and the groundwater boundary water bal-

ances [58,59]. Therefore, the module requires physical properties of modelled soil. In 

MOHID Land, the equation that describes the flow through soil is the Buckingham-Darcy 

equation [60,61]. 

For the soil moisture estimates, and in the absence of observed data, as an example, 

the modelling focused on site b only. The soil geometry was characterised by a constant 

depth of 2 m across the grid, divided between 5 layers with variable depths (Figure 2). 

Typically, as illustrated below, the upper soil was characterised with thinner layers and 

the lower soil with thicker layers. Layers can then be aggregated into soil horizons with 

different physical properties. The MOHID Land implementation described here, how-

ever, assumes a constant soil type for all grid cells and all layers across the soil profile. In 

the absence of detailed soil data, the soil here was characterised as a loam soil. 
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Figure 2. Case study soil geometry. 

Initial water moisture was set to field capacity for each layer, which, for the current 

implementation,meant a water content from the top layer to the bottom layer of 0.29, 0.19, 

0.17, 0.16, and 0.16 m3 of water per m3 of soil. Initial water moisture was constant for every 

cell across the grid. 

Considering that the first layer has a high variability, due to the fast reaction to pre-

cipitation, lower depths have lower variability and slower changes. The 2D results of the 

simulations are presented for the 3rd layer because tit balances both distinct behaviours.  

3. Results 

3.1. FAO Penman-Monteith ETr 

Average daily global reference evapotranspiration rasters for every month were de-

veloped, given the global scale of the datasets used (Figure 3). The range of mean daily 

values for July 2017 varied between 0 and 14 mm day−1, with the maximum values occur-

ring in arid areas of the mid latitudes. 

 

Figure 3. Average daily reference evapotranspiration estimated for July 2017 (mm day−1) used for 

the evapotranspiration estimates. 
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3.2. ETLook and CMRSET AET Estimates 

The first results presented are mean daily estimates of actual evapotranspiration 

(AET) per month at the field scale for both sites, which are shown in Figure 4. On the left, 

the results of the CMRSET algorithm [51] are presented, and on the right the results of the 

ETLook algorithm are shown. The values of AET calculated using the energy balance ap-

proach in ETLook [37] are generally lower than the AET estimates in CMRSET. The results 

from ETLook also demonstrate a different temporal pattern, with the peak in mean daily 

ET occurring in February, compared with January in the CMRSET algorithm. The differ-

ence is likely explained by the fact that the crop factor approach in CMRSET underesti-

mates the resistance due to stomatal closure and the variation in vegetation types, which 

the energy balance method picks up as it is more locally adjusted. As a result, the estimates 

of the CMRSET algorithm are mainly radiation driven. The single national regression in 

the crop factor approach does not directly scale to the field and would have to be adjusted 

for crop types.  

Scaling the mean daily values to monthly visualises the monthly spatial images (Fig-

ures 5 and 6). This clearly indicates the spatial variability of AET across the sites associated 

with different land cover (crops) and the irrigation scheduling. The monthly sums, for 

those fields that are irrigated, were much greater in January–March 2018 for the ETLook 

algorithm compared with the CMRSET algorithm. This is, again, because the ETLook al-

gorithm adjusts better to local variation than the global CMRSET algorithm and is less 

driven by the radiation signal. The CMRSET estimates picked up some variation in AET 

in space due to differences in the vegetation greenness, which influences the crop factor 

estimate (Equation (1)). However, in August–October 2017 at site a, there were spatial 

variations in greenness, reflected in the Kc estimates, but this translates in limited spatial 

variations in AET due to low radiation. In contrast, the ETLook results indicated a 

stronger spatial pattern.  

  

Figure 4. Average mean daily values by month for reference ET (Etr, blue bars) and AET for site a 

(orange bars) and site b (green bars) using the CMRSET approach (left) and ETLook algorithm 

(right) indicating much lower estimates of AET from the ETLook algorithm compared with the 

CMSRET approach. 
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Figure 5. Monthly sum of AET for study site a using the CMRSET approach and ETLook algorithm. 

Colour scale for predicted AET ranges from 0–150 mm. 

 

Figure 6. Monthly sum of AET for study site b using the CMRSET approach and ETLook algorithm. 

Colour scale for predicted AET ranges from 0–150 mm. 
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3.3. Site Water Balance and Efficiency 

Summarising these results to estimate the water balance for each site (Tables 2 and 3) 

shows accumulated annual rainfall of 4139.2 m3 ha−1 at site a, and 4199.2 m3 ha−1 at site b 

for the 2017/2018 cropping season. The accumulated AET using the CMRSET algorithm 

was 6686.7 m3 ha−1 for site a, and 7294.4 m3 ha−1 for site b. Using the ETLook algorithm, 

the estimates of accumulated AET were 4051.9 m3 ha−1 for site a, and 4066.0 m3 ha−1 for site 

b. Clearly, the annual estimates for ETLook were, again, lower than for the CMRSET al-

gorithm. As a result, the overall cumulative deficits for the ETLook estimates were quite 

small, suggesting irrigation might not be needed if rainfall were to be harvested effec-

tively. Using the reported water use by NSW DPIE, the calculated efficiencies were site a 

= 74% (no active on-farm dam), efficiency site b = 38.3% (active on-farm dam) (CMRSET). 

The efficiencies for ETLook were, of course, very small, and due to the negative estimates 

of the overall deficit not easily calculated.  

This points to a difficulty of calculating efficiencies based on cumulative rainfall for 

a month and ignoring any possible runoff losses. Clearly in some of the months with high 

rainfall totals, almost none of this rainfall was captured for effective evapotranspiration. 

As a result, it is also difficult to calculate efficiencies by month. 

Table 2. Water balance (m3 ha−1) for study sites a based on CMRSET and ETLook estimates of AET 

(Demand). 

   CMRSET ETLook 

Month Rain Use Demand Deficit Demand Deficit 

July 2017 182 10 261 79 197 15 

August 2017 248 8 302 53 272 24 

September 2017 31 37 624 593 591 560 

October 2017 828 372 520 −308 299 −529 

November 2017 731 212 621 −111 292 −439 

December 2017 399 620 906 507 380 −18 

January 2018 456 1278 942 486 554 98 

February 2018 435 721 771 336 785 350 

March 2018 457 71 725 268 385 −72 

April 2018 210 18 562 353 215 5 

May 2018 128 75 293 164 58 −70 

June 2018 34 22 162 128 22 −12 

Total 4139 3444 6687 2548 4052 −87 

Table 3. Water balance (m3 ha−1) for study site b based on CMRSET and ETLook estimates of AET 

(Demand). 

   CMRSET ETLook 

Month Rain Use Demand Deficit Demand Deficit 

July 2017 189 24 258 68 87 −103 

August 2017 246 20 285 39 199 −47 

September 2017 34 87 606 572 357 323 

October 2017 839 873 532 −307 195 −644 

November 2017 745 497 655 −89 198 −547 

December 2017 426 1453 1046 620 399 −27 

January 2018 463 2996 1065 602 895 433 

February 2018 429 1690 921 492 973 543 

March 2018 438 166 842 404 566 128 

April 2018 211 42 613 402 161 −50 

May 2018 132 175 302 170 25 −107 

June 2018 48 52 170 123 11 −37 

Total 4199 8074 7294 3095 4066 −133 
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3.4. Reservoir Volume Estimates  

The difference in the water use between site a (with no active farm dam) and site b 

(with an active farm dam) is also interesting. Using the Copernicus satellite data, the vol-

umes in the farm dam (and associated uncertainties) can be estimated (Figure 7). Notice-

able is the sharp increase in the farm dam volume after November 2017. At first glance, 

this appears to be related to the large water use figures for the cluster in December–Feb-

ruary at site b (Table 3). However, it also follows the rainfall surplus in October and No-

vember 2017 (Tables 2 and 3). In other words, the filling of the dam could be a combination 

of surplus runoff and ordered water stored on farm, which is subsequently drawn down 

for irrigation use. Note that in the images on the top row in Figure 7, the dates are not 

equally spaced. In the CMRSET algorithm, water storage translates into high water losses 

(evaporation, most probably) especially between November and February, which might 

explain the reduction in water efficiency for site b. 

 

Figure 7. Top: image time series of the water surface in the reservoir at site b. Bottom: mean modeled 

reservoir volume time series (dashed line) in study site b and associated uncertainties (grey shading 

for 68% confidence interval). The top figure indicates time snapshots of the satellite data showing 

the different surface water coverages in the reservoir. 

3.5. Soil Moisture Estimation 

The spatial distribution of the soil moisture, represented as the relative water content, 

in the 3rd modelled layer of the soil, i.e., at 25 cm of soil depth, is highlighted in Figure 8. 

Each image is a snapshot of the layer’s relative water content for the last time increment 

of each simulated month. The relative water content scales the actual soil moisture be-

tween 0 (very dry) and 1 (saturated). 

October 2017 indicated the highest spatial variability in soil moisture (Figure 8). This 

is most likely due to the high rainfall in October (Tables 2 and 3) combined with the spatial 

variation in the predicted evapotranspiration. This is not as visible in Figures 5 and 6 as 

the AET in those figures is the cumulative monthly AET, while in the soil moisture we 

observed a snapshot of the storage at the end of the month. The high rainfall for the month 

explains the overall higher water content across the domain’s grid. 
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September and December 2017 had an overall lower soil moisture across the grid 

following lower rainfall during August and September (Tables 2 and 3), while the relative 

soil water content in December 2017 can be associated with the higher rate of evapotran-

spiration during that month. 

 

Figure 8. MOHID Land porous media output of relative water moisture at 25 cm soil depth (from 

the terrain’s elevation) for the last time period of each month from July 2017 to June 2018 for Site b. 

For an even more local analysis and a detailed time series view, three grid cells with 

different crop coefficient values are highlighted (Figure 9).  
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Figure 9. (Top) Map of the position of three selected study points overlaying the satellite detected 

crop coefficient for the month of October 2017 in site b. (Bottom) Sentinel 2 data-derived (Equation 

(1)) crop coefficient time series from July 2017 to June 2018 for the three selected study points at site 

b. 

The time series of the simulated relative water content at 25 cm depth for the selected 

study points is highlighted in Figure 10, combined with the precipitation (rainfall) time 

series. This matches the common scale used to observe crop water productivity [4,31]. 

However, in this case the results are based on a landscape level gridded model, rather 

than a point scale model, which ignores any lateral flow effects. Figure 10 shows a detailed 

view of the relative water content increases and decreases as a response to wet and dry 

periods. The declines in relative water content followed typical exponential declines re-

lated to the soil water-retention characteristics in MOHID Land. 

Of course, in this case, the difference between the three points in Figure 10 is mainly 

driven by crop coefficients (Figure 9), as the soil properties were uniform across the grid 
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and no irrigation applications were assumed. For example, during October 2017, a high 

precipitation event over a long time period occurred, which resulted in a higher relative 

soil water content variability between the three points, as the different crop coefficients 

caused the AET to respond differently to the increased wetness for the three points. How-

ever, in November 2017 a high precipitation event during a short time frame occurred. 

This, coupled with the similar crop coefficient in November and December 2017, caused 

the variability in the relative water content to decrease substantially. 

 

Figure 10. Relative soil water content (-) time series from 1 July 2017 to 30 June 2018, and MOHID 

Land accumulated precipitation (mm) (rainfall) during the same period for locations 1, 2, and 3 

(Figure 9). 

Finally, Figure 11 shows a Time-Depth Graph for the three selected study locations. 

The figures clearly show the variability of soil water content due to precipitation. While 

the first layer (5 cm) reacted very fast to rainfall events and drying events, the bottom 

layer (200 cm) had much lower variability, with the relative soil water content continu-

ously decreasing throughout the simulated period. Considering that the simulation 

started at field capacity, this decrease shows that the soil has depleted due to the deficit 

between precipitation and evapotranspiration. Ideally, these results would be validated 

using observed soil moisture observations in the field, but these are currently not availa-

ble. 
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Figure 11. Time-depth graphs of the Relative Water Content (-) across the soil profile for the three 

selected study points (top: location 1, middle: location 2, bottom: location 3). Note that “Depth” is 

in elevation above Australian sea level (ASL). 

4. Discussion 

4.1. General Discussion 

In this paper, we demonstrated that it is now feasible to observe several water bal-

ance components at field scales using satellite data, complemented by modelling at finer 

scales. Evapotranspiration, soil moisture, and volumes of water in farm dams can all be 

observed, and there are often several approaches to estimate the same property, e.g., [31]. 

Soil moisture has always been difficult, as most of the remote sensing can only investigate 

the top few centimetres of soil, and this is mostly at very large scales [41,62]. As a result, 

the future might be using satellite observation of the top layers, augmented by soil mois-

ture modelling (as presented here and [62]), or using downscaling (Fuentes, Padarian, 

Vervoort, Towards near real-time national-scale soil water content monitoring using data fusion 

as a downscaling alternative, submitted to Journal of Hydrology). This also has the potential 

resolve the differences between the energy balance and crop-factor-based approaches 

highlighted in this paper. 

However, given that at least daily rainfall data exists in most places (and in Australia, 

several detailed gridded products exist), closure of the water balance is eminent: rainfall 

inputs, evapotranspiration outputs, and changes in storage can all be observed at a fine-

gridded scale. Assuming runoff losses in irrigated systems are negligible, closing the wa-

ter balance at the field and farm scale is within reach. 

Before we reach this point there are still several challenges, particularly if this needs 

to be extended to many global locations. The first is the availability of input data at suffi-

cient detail in time and space. While the satellite data are widely available, and ET esti-

mates can be derived without any ancillary data, this is not the case for several of the other 

water balance elements, as was demonstrated here. For example, the current implemen-

tation to quantify farm dam volumes [27] relies on the 1-m digital elevation model (DEM) 

that is available for parts of Australia. Applying the same algorithm to a coarser scale 

DEM will result in a significant deterioration of the accuracy as the actual depth of the 

farm dam cannot be estimated accurately. In the soil moisture modelling presented here, 
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several assumptions had to be made simply because detailed data for soil properties and 

irrigation applications were not available. However, despite these assumptions, model-

ling combined with satellite information will deliver estimates of sufficient accuracy that 

water balance calculations can be performed. For example, the modelling of soil moisture 

suggests that an increase of roughly 0.2 × 0.2 × 0.25 × 10,000 = 100 m3 ha−1 as a result of the 

rainfall in November, or approximately 10–15% of the monthly rainfall total, with similar 

amounts for the earlier month. This explains some of the mismatch in Tables 2 and 3, as 

this means that the “effective rainfall” contributing to the deficit is a lot lower, hence ex-

plaining the additional water use in many months. 

The second challenge leading from the above analysis is the assumption that runoff 

is negligible, or that all rainfall is somehow used for crop production. Clearly this is not 

the case, as Tables 2 and 3 and the above analysis demonstrate. With limited data on field 

scale runoff losses reported, this currently can only be resolved by modelling, or estimat-

ing using the water balance closure as a constraint. As runoff will vary globally depending 

on soil type, crop cover, and rainfall intensity, this remains a problem that can only be 

approached using modelling. 

The third major and most significant challenge is to progress from water balance 

components to crop productivity, and for this, accurate predictions of yields are an im-

portant step. There are two elements to this: the first is crop detection [63], and the second 

is the prediction of actual yields. Currently, the approach is to predict yields directly 

[64,65] as, particularly in Australia and the US, more and more growers use precision ag-

riculture and yield monitoring. However, predicting it from gross primary production 

(through evapotranspiration) would be more interesting, but this is limited by the varia-

tion in the conversion from biomass to yield between crops and locations.  

The fourth major challenge is around validation data. A recent review by Massari et 

al. [12] highlighted that accurate determination of irrigated water use remains challeng-

ing. They particularly highlighted the lack of validation data that are available to verify 

the predictions. However, in the end, accurate predictions of water productivity are also 

in the interest of irrigators as water accounting can offer important clues for improving 

water use efficiency of irrigated systems.  

4.2. How Do We Achieve Accurate Water Footprint and Crop Water Productivity Estimates at 

All Global Locations? 

Arguably, there is already an existing global crop water productivity platform pro-

vided by the FAO: WaPOR V2 [14,22]. This product provides estimates of crop water 

productivity based on remotely sensed ET, crop phenology, and biomass production/har-

vest indices at 250 m to 1 km scales. In terms of water use efficiency, this provides the 

Gross Production Water Use and Net Production Water Use indices [14]. However, as 

shown in the case study, while using ET can provide estimates of individual crop produc-

tivity, it cannot derive whole farm water footprints and whole farm irrigation efficiency 

(WFEI, [66]). For this, we still need understanding of the remaining water fluxes and stor-

ages at each enterprise. So far, this has only been achieved through detailed surveys (e.g., 

[66]). 

In the WaterSENSE project, the concepts related to WaPOR are combined with de-

tailed quantification of other components, but this remains challenging. We have the re-

mote sensing data and much of the ancillary data, but not always at the required spatial 

and temporal scales. Collection of validation data remains challenging, as there is a pleth-

ora of different spatial product offerings, especially in the evapotranspiration and vegeta-

tion remote sensing area. In addition, the commercialisation of irrigation management has 

resulted in a decline in government investment in irrigation research. Convincing local 

producers and irrigators to invest time and possibly money in collecting local data with-

out direct outcomes can therefore be challenging, even if this will in the future result in 

improved irrigation management [12]. However, to be able to quantify water footprints 
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and whole farm water use efficiency at any location in the world, there is a need to com-

bine research efforts and connect the available spatial and temporal data sources at finer 

scales, and any available point scale data through an open data platform. Several current 

platforms already can play this role, but in the context of water, GEOGLOWS 

(https://www.geoglows.org/ accessed on 23 February 2022) might be the best vehicle to 

capture such a global effort.  

A final major challenge is to quantify uncertainties with all the different water bal-

ance components. In this study, the uncertainties in the dam volume estimates related to 

the remote sensing pixel sizes were quantified [27], but for most of the other approaches 

the uncertainty remains unclear. This is, of course, not a simple challenge: accurately ac-

counting for all uncertainties (including the observation uncertainties) is no simple task 

and at this point only approximate uncertainties can be estimated. However, any recog-

nition of associated uncertainties will deliver better decision making and will drive future 

research. 

5. Conclusions 

Recent developments in remote sensing data and newly developed algorithms mean 

that observing field scale water balance components has now become feasible. Combining 

the different parts of the water balance means that assessing whole farm water use effi-

ciency as well as crop water productivity are now within reach. However, some signifi-

cant challenges remain in relation to quantifying runoff and crop yield and the availability 

of validation data at the correct scales to verify remote sensing observations. There is a 

need to collaborate at a global scale to combine existing data and deliver products that are 

scalable from the point scale to the enterprise level for different levels of input data accu-

racy and have quantified uncertainties. 
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